class PYT(tables.IsDescription): a = tables.Int32Col() b = tables.UInt8Col() c = tables.Float32Col() d = tables.StringCol(len(str(uuid4())) * 4) e = tables.Time32Col() f = tables.Time32Col()
class Volunteer(tables.IsDescription): idnumber = tables.Int64Col(pos=0) name = tables.StringCol(128, pos=1) remarqs = tables.StringCol(128, pos=2) # time_start = tables.Time32Col(pos=4, shape=MAX_DAYS) time_end = tables.Time32Col(pos=5, shape=MAX_DAYS) affected_tasks = tables.Int64Col(pos=3, shape=50, dflt=-1)
def test_create_weather_table(self): description = { 'event_id': tables.UInt32Col(pos=0), 'timestamp': tables.Time32Col(pos=1), 'temp_inside': tables.Float32Col(pos=2), 'temp_outside': tables.Float32Col(pos=3), 'humidity_inside': tables.Int16Col(pos=4), 'humidity_outside': tables.Int16Col(pos=5), 'barometer': tables.Float32Col(pos=6), 'wind_dir': tables.Int16Col(pos=7), 'wind_speed': tables.Int16Col(pos=8), 'solar_rad': tables.Int16Col(pos=9), 'uv': tables.Int16Col(pos=10), 'evapotranspiration': tables.Float32Col(pos=11), 'rain_rate': tables.Float32Col(pos=12), 'heat_index': tables.Int16Col(pos=13), 'dew_point': tables.Float32Col(pos=14), 'wind_chill': tables.Float32Col(pos=15) } file = MagicMock() result = esd._create_weather_table(file, sentinel.group) file.create_table.assert_called_once_with(sentinel.group, 'weather', description, createparents=True) self.assertEqual(result, file.create_table.return_value)
def test_create_table(self): description = { 'event_id': tables.UInt32Col(pos=0), 'timestamp': tables.Time32Col(pos=1), 'nanoseconds': tables.UInt32Col(pos=2), 'ext_timestamp': tables.UInt64Col(pos=3), 'pulseheights': tables.Int16Col(pos=4, shape=4), 'integrals': tables.Int32Col(pos=5, shape=4), 'n1': tables.Float32Col(pos=6), 'n2': tables.Float32Col(pos=7), 'n3': tables.Float32Col(pos=8), 'n4': tables.Float32Col(pos=9), 't1': tables.Float32Col(pos=10), 't2': tables.Float32Col(pos=11), 't3': tables.Float32Col(pos=12), 't4': tables.Float32Col(pos=13), 't_trigger': tables.Float32Col(pos=14) } file = MagicMock() result = esd._create_events_table(file, sentinel.group) file.create_table.assert_called_once_with(sentinel.group, 'events', description, createparents=True) self.assertEqual(result, file.create_table.return_value)
class LightningEvent(tables.IsDescription): event_id = tables.UInt32Col(pos=0) timestamp = tables.Time32Col(pos=1) corr_distance = tables.Int16Col(pos=2) uncorr_distance = tables.Int16Col(pos=3) uncorr_angle = tables.Float32Col(pos=4) corr_angle = tables.Float32Col(pos=5)
def reset_table(): """Creates h5f flatfile for storing price data Returns ------- h5f handle : returns a writable file handle for pytables table """ h5f = tables.openFile('price_data.h5', 'w') description = { "ticker": tables.StringCol(itemsize=6, dflt='', pos=1), "frequency": tables.StringCol(itemsize=1, dflt='d', pos=2), "date": tables.Time32Col(dflt=0.00, pos=3), "open": tables.Float32Col(dflt=0.00, pos=4), "high": tables.Float32Col(dflt=0.00, pos=5), "low": tables.Float32Col(dflt=0.00, pos=6), "close": tables.Float32Col(dflt=0.00, pos=7), "volume": tables.Int64Col(dflt=0.00, pos=8), "adjustedClose": tables.Float32Col(dflt=0.00, pos=9), "timestamp": tables.Time64Col(dflt=0.00, pos=10) } table = h5f.createTable('/', 'price_data', description) h5f.close()
def _create_weather_table(file, group): """Create weather table in PyTables file Create a weather table containing the ESD weather columns which are available in the TSV download. :param file: PyTables file. :param group: the group to contain the weather table, which need not exist. """ description = { 'event_id': tables.UInt32Col(pos=0), 'timestamp': tables.Time32Col(pos=1), 'temp_inside': tables.Float32Col(pos=2), 'temp_outside': tables.Float32Col(pos=3), 'humidity_inside': tables.Int16Col(pos=4), 'humidity_outside': tables.Int16Col(pos=5), 'barometer': tables.Float32Col(pos=6), 'wind_dir': tables.Int16Col(pos=7), 'wind_speed': tables.Int16Col(pos=8), 'solar_rad': tables.Int16Col(pos=9), 'uv': tables.Int16Col(pos=10), 'evapotranspiration': tables.Float32Col(pos=11), 'rain_rate': tables.Float32Col(pos=12), 'heat_index': tables.Int16Col(pos=13), 'dew_point': tables.Float32Col(pos=14), 'wind_chill': tables.Float32Col(pos=15) } return file.create_table(group, 'weather', description, createparents=True)
class WeatherConfig(tables.IsDescription): event_id = tables.UInt32Col(pos=0) timestamp = tables.Time32Col(pos=1) com_port = tables.UInt8Col(pos=2) baud_rate = tables.Int16Col(pos=3) station_id = tables.UInt32Col(pos=4) database_name = tables.Int32Col(dflt=-1, pos=5) help_url = tables.Int32Col(dflt=-1, pos=6) daq_mode = tables.BoolCol(pos=7) latitude = tables.Float64Col(pos=8) longitude = tables.Float64Col(pos=9) altitude = tables.Float64Col(pos=10) temperature_inside = tables.BoolCol(pos=11) temperature_outside = tables.BoolCol(pos=12) humidity_inside = tables.BoolCol(pos=13) humidity_outside = tables.BoolCol(pos=14) barometer = tables.BoolCol(pos=15) wind_direction = tables.BoolCol(pos=16) wind_speed = tables.BoolCol(pos=17) solar_radiation = tables.BoolCol(pos=18) uv_index = tables.BoolCol(pos=19) evapotranspiration = tables.BoolCol(pos=20) rain_rate = tables.BoolCol(pos=21) heat_index = tables.BoolCol(pos=22) dew_point = tables.BoolCol(pos=23) wind_chill = tables.BoolCol(pos=24) offset_inside_temperature = tables.Float32Col(pos=25) offset_outside_temperature = tables.Float32Col(pos=26) offset_inside_humidity = tables.Int16Col(pos=27) offset_outside_humidity = tables.Int16Col(pos=28) offset_wind_direction = tables.Int16Col(pos=29) offset_station_altitude = tables.Float32Col(pos=30) offset_bar_sea_level = tables.Float32Col(pos=31)
def _create_events_table(file, group): """Create event table in PyTables file Create an event table containing the ESD data columns which are available in the TSV download. :param file: PyTables file. :param group: the group to contain the events table, which need not exist. """ description = { 'event_id': tables.UInt32Col(pos=0), 'timestamp': tables.Time32Col(pos=1), 'nanoseconds': tables.UInt32Col(pos=2), 'ext_timestamp': tables.UInt64Col(pos=3), 'pulseheights': tables.Int16Col(pos=4, shape=4), 'integrals': tables.Int32Col(pos=5, shape=4), 'n1': tables.Float32Col(pos=6), 'n2': tables.Float32Col(pos=7), 'n3': tables.Float32Col(pos=8), 'n4': tables.Float32Col(pos=9), 't1': tables.Float32Col(pos=10), 't2': tables.Float32Col(pos=11), 't3': tables.Float32Col(pos=12), 't4': tables.Float32Col(pos=13), 't_trigger': tables.Float32Col(pos=14) } return file.create_table(group, 'events', description, createparents=True)
def _create_singles_table(file, group): """Create singles table in PyTables file Create a singles table containing the ESD singles columns which are available in the TSV download. :param file: PyTables file. :param group: the group to contain the singles table, which need not exist. """ description = { 'event_id': tables.UInt32Col(pos=0), 'timestamp': tables.Time32Col(pos=1), 'mas_ch1_low': tables.Int32Col(pos=2), 'mas_ch1_high': tables.Int32Col(pos=3), 'mas_ch2_low': tables.Int32Col(pos=4), 'mas_ch2_high': tables.Int32Col(pos=5), 'slv_ch1_low': tables.Int32Col(pos=6), 'slv_ch1_high': tables.Int32Col(pos=7), 'slv_ch2_low': tables.Int32Col(pos=8), 'slv_ch2_high': tables.Int32Col(pos=9) } return file.create_table(group, 'singles', description, createparents=True)
def _create_lightning_table(file, group): """Create lightning table in PyTables file Create an lightning table containing the ESD data columns which are available in the TSV download. :param file: PyTables file. :param group: the group to contain the lightning table, which need not exist. """ description = { 'event_id': tables.UInt32Col(pos=0), 'timestamp': tables.Time32Col(pos=1), 'nanoseconds': tables.UInt32Col(pos=2), 'ext_timestamp': tables.UInt64Col(pos=3), 'latitude': tables.Float32Col(pos=4), 'longitude': tables.Float32Col(pos=5), 'current': tables.Float32Col(pos=6) } return file.create_table(group, 'lightning', description, createparents=True)
class Tasks(tables.IsDescription): name = tables.StringCol(128, pos=3) day = tables.Time32Col(pos=1) idnumber = tables.Int64Col(pos=0) task_type = tables.EnumCol( ['welcoming', 'balisage', 'logistics', 'security', 'race', 'other'], 'welcoming', 'int32', pos=2) time_start = tables.Time32Col(pos=4) time_end = tables.Time32Col(pos=5) N_needed = tables.Int8Col(pos=6) N_filled = tables.Int8Col(pos=7) remarqs = tables.StringCol(128, pos=8) # stuff_needed = tables.StringCol(128, pos=9) # affected_volunteers = tables.Int64Col(pos=10, shape=50, dflt=-1)
class HisparcComparatorData(tables.IsDescription): event_id = tables.UInt32Col(pos=0) timestamp = tables.Time32Col(pos=2) nanoseconds = tables.UInt32Col(pos=3) ext_timestamp = tables.UInt64Col(pos=4) device = tables.UInt8Col(pos=5) comparator = tables.UInt8Col(pos=6) count = tables.UInt16Col(pos=7)
class LightningStatus(tables.IsDescription): event_id = tables.UInt32Col(pos=0) timestamp = tables.Time32Col(pos=1) close_rate = tables.Int16Col(pos=2) total_rate = tables.Int16Col(pos=3) close_alarm = tables.BoolCol(pos=4) sever_alarm = tables.BoolCol(pos=5) current_heading = tables.Float32Col(pos=6)
class DescQuote(tb.IsDescription): time = tb.Time32Col(pos=0) # Seconds since 1970.1.1): integer open = tb.Float32Col(pos=1) # open price: float high = tb.Float32Col(pos=2) # highest price: float low = tb.Float32Col(pos=3) # lowest price: float close = tb.Float32Col(pos=4) # close price: float vol = tb.UInt32Col(pos=5) # volumn(100 share): sum = tb.Float32Col(pos=6) # sum: float
class HisparcSatellite(tables.IsDescription): event_id = tables.UInt32Col(pos=0) timestamp = tables.Time32Col(pos=1) min_n = tables.UInt16Col(pos=2) mean_n = tables.Float32Col(pos=3) max_n = tables.UInt16Col(pos=4) min_signal = tables.UInt16Col(pos=5) mean_signal = tables.Float32Col(pos=6) max_signal = tables.UInt16Col(pos=7)
class HisparcEvent(tables.IsDescription): event_id = tables.UInt64Col() timestamp = tables.Time32Col() nanoseconds = tables.UInt32Col() ext_timestamp = tables.UInt64Col() pulseheights = tables.Int16Col(shape=4, dflt=-9999) integrals = tables.Int32Col(shape=4, dflt=-9999) n_peaks = tables.Int32Col(shape=4, dflt=-9999) traces = tables.Int32Col(shape=4, dflt=-1)
class DescSPLITS(tb.IsDescription): """ struct: date, sending ratio(free), sending ratio (charged), sending price, dividend """ time = tb.Time32Col(pos=0) # seconds ince 1970.1.1): integer sd = tb.Float32Col(pos=1) # songgu ratio: float ss = tb.Float32Col(pos=2) # peigu ratio: float ssp = tb.Float32Col(pos=3) # peigu ratio: float cd = tb.Float32Col(pos=4) # dividend: float
class Coincidence(tables.IsDescription): """Store information about a coincidence of stations within a cluster. An extensive air shower can trigger multiple stations, resulting in a set of events which are from the same shower. This is called a coincidence. This table assigns an :attr:`id` to a coincidence and provides some additional information. The events making up the coincidence can be looked up using the :class:`c_index` table. Let ``coincidence`` be a row from this table, then you can do:: >>> coincidence_id = coincidence['id'] >>> event_ids = c_index[coincidence_id] >>> coincidence_event_list = [events[u] for u in event_ids] Note that all events included in the coincidence are not required to actually have measured particles. For example, simulations include all events from the same shower in the coincidence, regardless of observed particles. On the other hand, experimental datasets only include stations which have triggered, but may include events which have not actually measured the same shower, but simply measured other particles at the same time, by chance. Simulations may set the :attr:`r`, :attr:`phi`, :attr:`x`, :attr:`y` and :attr:`alpha` attributes to simulation parameters, like core position and cluster rotation. .. attribute:: id a unique identifier for the coincidence (only unique in this table) .. attribute:: N the number of triggered stations .. attribute:: r, phi, x, y The coordinates of the shower core in a simulation. .. attribute:: shower_theta, shower_phi The direction of the (simulated) shower. """ id = tables.UInt32Col() timestamp = tables.Time32Col() nanoseconds = tables.UInt32Col() ext_timestamp = tables.UInt64Col() N = tables.UInt8Col() r = tables.Float32Col() phi = tables.Float32Col() x = tables.Float32Col() y = tables.Float32Col() shower_theta = tables.Float32Col() shower_phi = tables.Float32Col() shower_size = tables.Float32Col()
class Accessions(tables.IsDescription): accession_id = tables.Int32Col() name = tables.StringCol(16) latitude = tables.Float32Col() longitude = tables.Float32Col() country = tables.StringCol(256) country_ISO = tables.StringCol(3) collector = tables.StringCol(256) collection_date = tables.Time32Col() dataset = tables.EnumCol(['10', '16', 'both'], '10', base='uint8')
class Accessions(tables.IsDescription): accession_id = tables.Int32Col() name = tables.StringCol(16) latitude = tables.Float32Col() longitude = tables.Float32Col() country = tables.StringCol(256) country_ISO = tables.StringCol(3) collector = tables.StringCol(256) collection_date = tables.Time32Col() dataset = tables.StringCol(256)
class HisparcSingle(tables.IsDescription): event_id = tables.UInt32Col(pos=0) timestamp = tables.Time32Col(pos=1) mas_ch1_low = tables.Int32Col(dflt=-1, pos=2) mas_ch1_high = tables.Int32Col(dflt=-1, pos=3) mas_ch2_low = tables.Int32Col(dflt=-1, pos=4) mas_ch2_high = tables.Int32Col(dflt=-1, pos=5) slv_ch1_low = tables.Int32Col(dflt=-1, pos=6) slv_ch1_high = tables.Int32Col(dflt=-1, pos=7) slv_ch2_low = tables.Int32Col(dflt=-1, pos=8) slv_ch2_high = tables.Int32Col(dflt=-1, pos=9)
class Density(tb.IsDescription): """ trade density Table structure: - date: 날짜 - price: 가격 - value: 거래량 """ date = tb.Time32Col(pos=0) price = tb.Float64Col(pos=1) value = tb.Float64Col(pos=2)
class EventObservables(tables.IsDescription): """Store information about the observables of an event. The observables are described for each station independently. So, for each event (with a unique :attr:`id`), there is a table row for each station (with a unique :attr:`station_id`), such that only the (id, station_id) combinations are unique in the table. .. attribute:: id a unique identifier for the simulated event (only unique in this table) .. attribute:: station_id station identifier, such that you can do:: >>> station = cluster.stations[station_id] .. attribute:: r, phi, x, y coordinates of the station. Depending on the simulation, this might be constant throughout the simulation, or it might change event by event. .. attribute:: alpha rotation of the station around its center .. attribute:: N number of detectors with at least one particle """ id = tables.UInt32Col() station_id = tables.UInt8Col() timestamp = tables.Time32Col() nanoseconds = tables.UInt32Col() ext_timestamp = tables.UInt64Col() r = tables.Float32Col() phi = tables.Float32Col() x = tables.Float32Col() y = tables.Float32Col() alpha = tables.Float32Col() N = tables.UInt8Col() t1 = tables.Float32Col() t2 = tables.Float32Col() t3 = tables.Float32Col() t4 = tables.Float32Col() n1 = tables.Float32Col() n2 = tables.Float32Col() n3 = tables.Float32Col() n4 = tables.Float32Col()
class ConfigDescriptionLive(IsDescription): cutoff_date = tables.Time32Col() pres_start = tables.Time32Col() id_assessment = tables.Int32Col() assessment_name = tables.StringCol(16) days_to_cutoff = tables.Int32Col() current_date = tables.Time32Col() train_labels_from = tables.Time32Col() train_labels_to = tables.Time32Col() test_labels_from = tables.Time32Col() test_labels_to = tables.Time32Col()
class Coincidence(tables.IsDescription): event_id = tables.UInt64Col() k_event_id = tables.UInt64Col() timestamp = tables.Time32Col() nanoseconds = tables.UInt32Col() ext_timestamp = tables.UInt64Col() pulseheights = tables.Int16Col(shape=4, dflt=-9999) integrals = tables.Int32Col(shape=4, dflt=-9999) n_peaks = tables.Int32Col(shape=4, dflt=-9999) traces = tables.Int32Col(shape=4, dflt=-1) k_timestamp = tables.Time32Col() k_nanoseconds = tables.UInt32Col() k_ext_timestamp = tables.UInt64Col() k_energy = tables.FloatCol() k_core_pos = tables.FloatCol(shape=2) k_zenith = tables.FloatCol() k_azimuth = tables.FloatCol() k_Num_e = tables.FloatCol() k_Num_mu = tables.FloatCol() k_dens_e = tables.FloatCol(shape=4) k_dens_mu = tables.FloatCol(shape=4) k_P200 = tables.FloatCol() k_T200 = tables.FloatCol()
class GenomeTable(tables.IsDescription): NCBITaxonId = tables.UInt32Col(pos=0) UniProtSpeciesCode = tables.StringCol(5, pos=1) TotEntries = tables.UInt32Col(pos=2) TotAA = tables.UInt32Col(pos=3) EntryOff = tables.UInt32Col(pos=4) SciName = tables.StringCol(255, pos=5) CommonName = tables.StringCol(64, pos=6) SynName = tables.StringCol(64, pos=7) Release = tables.StringCol(128, pos=8) Url = tables.StringCol(255, pos=9) Source = tables.StringCol(255, pos=10) Date = tables.Time32Col(pos=11) IsPolyploid = tables.BoolCol(pos=12)
class HisparcEvent(tables.IsDescription): # DISCUSS: use of signed (dflt -1) vs unsigned (labview code) event_id = tables.UInt32Col(pos=0) timestamp = tables.Time32Col(pos=2) nanoseconds = tables.UInt32Col(pos=3) ext_timestamp = tables.UInt64Col(pos=4) data_reduction = tables.BoolCol(pos=5) trigger_pattern = tables.UInt32Col(pos=6) baseline = tables.Int16Col(shape=4, dflt=-1, pos=7) std_dev = tables.Int16Col(shape=4, dflt=-1, pos=8) n_peaks = tables.Int16Col(shape=4, dflt=-1, pos=9) pulseheights = tables.Int16Col(shape=4, dflt=-1, pos=10) integrals = tables.Int32Col(shape=4, dflt=-1, pos=11) traces = tables.Int32Col(shape=4, dflt=-1, pos=12) event_rate = tables.Float32Col(pos=13)
class RunTable(tables.IsDescription): run_id = tables.StringCol(40) # sha1 hashes are 40 char long init_type = tables.StringCol(10) datetime = tables.Time32Col() num_links = tables.Int32Col() sim_duration = tables.Float32Col() sample_rate = tables.Float32Col() sensor_noise = tables.BoolCol() num_iterations = tables.Int32Col() num_obj_evals = tables.Int32Col() num_obj_grad_evals = tables.Int32Col() num_con_evals = tables.Int32Col() num_con_jac_evals = tables.Int32Col() time_ipopt = tables.Float32Col() time_func_evals = tables.Float32Col()
class Events(tables.IsDescription): id = tables.Int32Col() traces = tables.Float32Col(shape=(N_stations * 4, 80)) labels = tables.Float32Col(shape=3) timings = tables.Float32Col(shape=4) pulseheights = tables.Float32Col(shape=4) integrals = tables.Float32Col(shape=4) mips = tables.Float32Col(shape=4) rec_z = tables.Float32Col() rec_a = tables.Float32Col() zenith = tables.Float32Col() azimuth = tables.Float32Col() timestamp = tables.Time32Col() core_distance = tables.Float32Col() mpv = tables.Float32Col() energy = tables.Float32Col()