Exemplo n.º 1
0
 def compress(self, ):
     '''Close and compress the HDF file after creation.
     
     Notes
     -----
     This is very important if lots of files have been appended to an
     existing HDF file.
     '''
     # Close the hdf file
     self.close()
     # Make a copy of the file.
     # This compresses the file if a lot of changes have been made
     tb.copyFile(self.filename, self.filename + 'temp', overwrite=True)
     os.remove(self.filename)
     os.rename(self.filename + 'temp', self.filename)
Exemplo n.º 2
0
            output_array = input1_array
        elif ent_name2 in set_ent_names2:
            output_array = input2_array
        else:
            raise Exception("this shouldn't have happened")
        
        table1.append(output_array)             
        table1.removeRows(start1, stop1)
        table1.flush()
        
               
            
    print " done."



    input1_file.close()
    input2_file.close()



if __name__ == '__main__':
    import sys
    import platform

    print "LIAM HDF5 merge %s using Python %s (%s)\n" % \
          (__version__, platform.python_version(), platform.architecture()[0])


    tables.copyFile("C:/Myliam2/Model/SimulTest.h5", "C:/Myliam2/Model/SimulTestTemp.h5", overwrite=True)
    merge_h5("C:/Myliam2/Model/SimulTest.h5", output+"LiamLeg.h5",None)
Exemplo n.º 3
0
    plt.text(0.5, ints.max()*0.8, text_string.format(slope, intercept, r**2))
    plt.savefig(os.path.join(args.cal_folder, name+'_cal_curve'), dpi=200)
    plt.close()


if __name__ == '__main__':
    h5f, table = cal_h5_build(args)

    refs, ref_files = cal_file('calibration.csv')

    gcms.clear_png(args.cal_folder)

    if args.nproc == 1:
        aias = [aia_build(i) for i in ref_files]
    else:
        p = Pool(args.nproc)
        aias = p.map(aia_build, ref_files)

    aias = dict( zip(ref_files, aias) )

    for name in refs:
        int_extract(name, refs[name], aias, args)
        h5f.flush()

    h5f.close()
    
    pyt.copyFile(args.cal_name, args.cal_name+'temp', overwrite=True)
    os.remove(args.cal_name)
    os.rename(args.cal_name+'temp', args.cal_name)

Exemplo n.º 4
0
    def setUp(self):
        path = "./test_corpus.h5"
        multi_path = "./test_corpus_working.h5"
        self.num_W = 26
        self.num_D = 100
        self.num_Z = 20

        # Generate a vocabulary.
        vdict = {}
        i = 0
        for l in string.letters[0:26]:
            vdict[i] = l
            i += 1

        f = t.openFile(path, "w")
        g = f.createGroup("/", "g")
        v = f.createTable(g, "vocabulary", Word)
        for key, value in vdict.iteritems():
            w = v.row
            w['string'] = value
            w['index'] = key
            w.append()
            v.flush()
        f.flush()

        # Generate a random corpus with integer word-counts.
        dist = [ 0 for i in xrange(20) ] + [ 1, 1, 1, 2, 2, 3 ]
        documents = [ np.array([ dist[random.randint(0, 25)] for x in xrange(self.num_W-1) ]+[1]).reshape(1, 26) for i in xrange(self.num_D) ]
        maxs = [ np.max(doc) for doc in documents ]
        print min(maxs)

        dw = f.createEArray("/g", "document_word", atom=tables.Float64Atom(), expectedrows=20, shape=(0, 26))
        for d in documents:
            dw.append(d)
            dw.flush()
        f.flush()

        # Generate random probability matrices.

        d_t = f.createEArray("/g", "document_topic", atom=tables.Float64Atom(), expectedrows=self.num_D, shape=(0, self.num_Z))
        for i in xrange(self.num_D):
            vec = np.random.random(size=(self.num_Z, 1))
            normalize(vec)
            d_t.append(vec.reshape(1, self.num_Z))
        f.flush()


        t_w = f.createEArray("/g", "topic_word", atom=tables.Float64Atom(), expectedrows=self.num_Z, shape=(self.num_Z, 0))
        for i in xrange(self.num_W):
            vec = np.random.random(size=(self.num_Z, 1))
            normalize(vec)
            t_w.append(vec)
        f.flush()

        t_ = f.createEArray("/g", "topic", atom=tables.Float64Atom(), expectedrows=self.num_D, shape=(0, self.num_W, self.num_Z))
        for i in xrange(self.num_D):
            mat = []
            for x in xrange(self.num_W):
                vec = np.random.random(size=(self.num_Z, 1))
                normalize(vec)
                mat.append(vec.reshape(self.num_Z))
            a = np.array([mat])
            t_.append(a)
        f.flush()
        f.close()

        # Make a copy, for comparison.
        t.copyFile(path, multi_path)