def compress(self, ): '''Close and compress the HDF file after creation. Notes ----- This is very important if lots of files have been appended to an existing HDF file. ''' # Close the hdf file self.close() # Make a copy of the file. # This compresses the file if a lot of changes have been made tb.copyFile(self.filename, self.filename + 'temp', overwrite=True) os.remove(self.filename) os.rename(self.filename + 'temp', self.filename)
output_array = input1_array elif ent_name2 in set_ent_names2: output_array = input2_array else: raise Exception("this shouldn't have happened") table1.append(output_array) table1.removeRows(start1, stop1) table1.flush() print " done." input1_file.close() input2_file.close() if __name__ == '__main__': import sys import platform print "LIAM HDF5 merge %s using Python %s (%s)\n" % \ (__version__, platform.python_version(), platform.architecture()[0]) tables.copyFile("C:/Myliam2/Model/SimulTest.h5", "C:/Myliam2/Model/SimulTestTemp.h5", overwrite=True) merge_h5("C:/Myliam2/Model/SimulTest.h5", output+"LiamLeg.h5",None)
plt.text(0.5, ints.max()*0.8, text_string.format(slope, intercept, r**2)) plt.savefig(os.path.join(args.cal_folder, name+'_cal_curve'), dpi=200) plt.close() if __name__ == '__main__': h5f, table = cal_h5_build(args) refs, ref_files = cal_file('calibration.csv') gcms.clear_png(args.cal_folder) if args.nproc == 1: aias = [aia_build(i) for i in ref_files] else: p = Pool(args.nproc) aias = p.map(aia_build, ref_files) aias = dict( zip(ref_files, aias) ) for name in refs: int_extract(name, refs[name], aias, args) h5f.flush() h5f.close() pyt.copyFile(args.cal_name, args.cal_name+'temp', overwrite=True) os.remove(args.cal_name) os.rename(args.cal_name+'temp', args.cal_name)
def setUp(self): path = "./test_corpus.h5" multi_path = "./test_corpus_working.h5" self.num_W = 26 self.num_D = 100 self.num_Z = 20 # Generate a vocabulary. vdict = {} i = 0 for l in string.letters[0:26]: vdict[i] = l i += 1 f = t.openFile(path, "w") g = f.createGroup("/", "g") v = f.createTable(g, "vocabulary", Word) for key, value in vdict.iteritems(): w = v.row w['string'] = value w['index'] = key w.append() v.flush() f.flush() # Generate a random corpus with integer word-counts. dist = [ 0 for i in xrange(20) ] + [ 1, 1, 1, 2, 2, 3 ] documents = [ np.array([ dist[random.randint(0, 25)] for x in xrange(self.num_W-1) ]+[1]).reshape(1, 26) for i in xrange(self.num_D) ] maxs = [ np.max(doc) for doc in documents ] print min(maxs) dw = f.createEArray("/g", "document_word", atom=tables.Float64Atom(), expectedrows=20, shape=(0, 26)) for d in documents: dw.append(d) dw.flush() f.flush() # Generate random probability matrices. d_t = f.createEArray("/g", "document_topic", atom=tables.Float64Atom(), expectedrows=self.num_D, shape=(0, self.num_Z)) for i in xrange(self.num_D): vec = np.random.random(size=(self.num_Z, 1)) normalize(vec) d_t.append(vec.reshape(1, self.num_Z)) f.flush() t_w = f.createEArray("/g", "topic_word", atom=tables.Float64Atom(), expectedrows=self.num_Z, shape=(self.num_Z, 0)) for i in xrange(self.num_W): vec = np.random.random(size=(self.num_Z, 1)) normalize(vec) t_w.append(vec) f.flush() t_ = f.createEArray("/g", "topic", atom=tables.Float64Atom(), expectedrows=self.num_D, shape=(0, self.num_W, self.num_Z)) for i in xrange(self.num_D): mat = [] for x in xrange(self.num_W): vec = np.random.random(size=(self.num_Z, 1)) normalize(vec) mat.append(vec.reshape(self.num_Z)) a = np.array([mat]) t_.append(a) f.flush() f.close() # Make a copy, for comparison. t.copyFile(path, multi_path)