Exemplo n.º 1
0
  def compute_metric(self):

    bad_hosts=tspl_utils.lost_data(self.ts)
    if len(bad_hosts) > 0:
      print(self.ts.j.id, ': Detected hosts with bad data: ', bad_hosts)
      return

    vals=[]
    for i in [x + 2 for x in range(self.ts.size-4)]:
      vals.append(self.compute_fit_params(i))

    vals2=[]
    for v in vals:
      vals2.append([ b/a for (a,b) in v])


    arr=numpy.array(vals2)
    brr=numpy.transpose(arr)

    (m,n)=numpy.shape(brr)

    r=[]
    for i in range(m):
      jnd=numpy.argmin(brr[i,:])
      r.append((jnd,brr[i,jnd]))

    for (ind,ratio) in r:
      self.metric = min(ratio,self.metric)
    return
Exemplo n.º 2
0
  def compute_metric(self):

    if len(tspl_utils.lost_data(self.ts)) > 0: 
      print(self.ts.j.id, ': Detected hosts with bad data')
      return

    self.tmid=(self.ts.t[:-1]+self.ts.t[1:])/2.0
    self.dt = numpy.diff(self.ts.t)

    #skip first and last two time slices
    vals=[]
    for i in [x + 2 for x in range(self.ts.size-4)]:
      vals.append(self.compute_fit_params(i))

    #times  hosts ---->
    #  |
    #  |
    #  |
    #  V

    self.metric = numpy.array(vals).min()
    return
Exemplo n.º 3
0
    def compute_metric(self):

        if len(tspl_utils.lost_data(self.ts)) > 0:
            print(self.ts.j.id, ': Detected hosts with bad data')
            return

        self.tmid = (self.ts.t[:-1] + self.ts.t[1:]) / 2.0
        self.dt = numpy.diff(self.ts.t)

        #skip first and last two time slices
        vals = []
        for i in [x + 2 for x in range(self.ts.size - 4)]:
            vals.append(self.compute_fit_params(i))

        #times  hosts ---->
        #  |
        #  |
        #  |
        #  V
        try:
            self.metric = numpy.array(vals).min()
        except:
            pass
        return