Exemplo n.º 1
0
def compute_ccdfs(binned_temporal_network,max_group,time_normalization_factor=1./3600.,n_bins=50,logarithmic_bins=False):

    t_fw, k_fw = tc.mean_degree(binned_temporal_network)

    if logarithmic_bins:
        bins = np.append([0.],np.logspace(log10(k_fw[k_fw>0.0].min())-0.1,log10(k_fw.max()),n_bins) )
    else:
        bins = np.append([0.],np.linspace(k_fw[k_fw>0.0].min(), k_fw.max(), n_bins) ) 

    x_k, y_k = get_ccdf(k_fw)
    y_k = tc.sample_a_function(x_k, y_k, bins)
    x_k = bins

    result = tc.measure_group_sizes_and_durations(binned_temporal_network)

    grp_sizes = np.array(result.aggregated_size_histogram[1:])
    m = np.arange(1,len(grp_sizes)+1)
    m, grp_sizes = get_ccdf_from_distribution(m, grp_sizes)

    durations = np.array(result.contact_durations) * time_normalization_factor

    if logarithmic_bins:
        bins = np.append([0.],np.logspace(log10(durations.min())-0.1,log10(durations.max()),n_bins) )
    else:
        bins = np.append([0.],np.linspace(durations.min(), durations.max(), n_bins) )

    x_contact, y_contact = get_ccdf(durations)
    y_contact = tc.sample_a_function(x_contact, y_contact, bins)
    x_contact = bins

    y_groups = []
    x_groups = []

    for group_size in range(1,max_group+1):
        durations = np.array(result.group_durations[group_size]) * time_normalization_factor


        if len(durations) <= 2:
            x = []
            y = []
        else:
            if logarithmic_bins:
                bins = np.append([0.],np.logspace(log10(durations.min())-0.1,log10(durations.max()),n_bins) )
            else:
                bins = np.append([0.],np.linspace(durations.min(), durations.max(), n_bins) )

            x, y = get_ccdf(durations)
            y = tc.sample_a_function(x_contact, y_contact, bins)
            x = bins

        #if group_size == 1:
        #    print('\n',alpha,'\n')
        x_groups.append(x)
        y_groups.append(y)

    xs = [x_k, [], x_contact ] + x_groups
    ys = [y_k, grp_sizes, y_contact ] + y_groups

    return xs, ys
Exemplo n.º 2
0
    eta = R0 * rho / mean_k

    i_sample = np.zeros_like(t_sample)

    successful = 0

    for meas in range(N_meas):

        sis = tc.SIS(N,
                     t_simulation,
                     eta,
                     rho,
                     number_of_initially_infected=10)

        tc.gillespie_SIS(tn, sis)

        t = np.array(sis.time)
        i = np.array(sis.I, dtype=float) / N

        this_sample = tc.sample_a_function(t, i, t_sample)

        if this_sample[-1] > 0.0:
            successful += 1
            i_sample += this_sample

        ax[2].plot(t_sample, this_sample, c=line.get_color(), alpha=0.1)

    ax[1].plot(t_sample, i_sample / successful)

pl.show()
Exemplo n.º 3
0
edge_weight_tuples = [(u, v, 1.0) for u, v in G.edges()]

t_sample = np.linspace(0, 10, 100)
i_sample = np.zeros_like(t_sample)
i_sample_tc = np.zeros_like(t_sample)
N_measurements = 1000
for meas in range(N_measurements):

    sir = SIR_weighted(N, edge_weight_tuples, infection_rate, recovery_rate,
                       I0)

    t, I, R = sir.simulation(tmax)

    print("simulation time:", t[-1])

    i_sample += tc.sample_a_function(t, I / N, t_sample) / N_measurements
    #pl.plot(t[[0,-1]], [1-1/R0]*2)
    #pl.plot(t[[0,-1]], [I_mean/N]*2, '--', lw=2,)
    #==============================

    _G = tc.convert_static_network(N, list(G.edges()))
    sir = tc.SIR(N, tmax, infection_rate, recovery_rate, I0)

    tc.gillespie_SIR(_G, sir)
    t = np.array(sir.time)
    I = np.array(sir.I)

    #pl.figure()
    print("simulation time tacoma:", t[-1])

    i_sample_tc += tc.sample_a_function(t, I / N, t_sample) / N_measurements
Exemplo n.º 4
0
def flockwork_P_contact_time_distributions_for_varying_alpha_beta(
        tau, N, k_initial, t, alpha, beta, tmax, sampling_points=10):
    r"""Compute the mean group size distribution for a Flockwork-P system with varying rates.

    Parameters
    ----------
    tau : numpy.ndarray of float
        durations for which to evaluate the probability density
    N : int
        Number of nodes
    k_initial : float
        initial mean degree
    t : numpy.ndarray of float
        time points at which :math:`\alpha(t)` and 
        :math:`\beta(t)` change
    alpha : numpy.ndarray of float
        active reconnection rate associated with
        the time points in ``t``
    beta : numpy.ndarray of float
        active disconnection rate associated with
        the time points in ``t``
    tmax : float
        final time
    sampling_points : int, default : 10
        how many points to sample in between two time points in `t`

    Returns
    -------
    P_tau_c : numpy.array
        Mean probability density of values at ``tau`` (contact duration)
    P_tau_ic : numpy.array
        Mean probability density of values at ``tau`` (inter-contact duration)
    """

    # estimate mean degree from integrating ODE
    new_t, k = flockwork_P_mean_degree_for_varying_alpha_beta(
        N, k_initial, t, alpha, beta, tmax, sampling_points)

    # from equilibrium assumption k = P/(1-P) compute adjusted P
    new_P = k / (k + 1)
    gamma = alpha + beta
    new_gamma = tc.sample_a_function(t, gamma, new_t)
    new_alpha = tc.sample_a_function(t, alpha, new_t)

    distro_c = []
    distro_ic = []

    ks = np.arange(N)
    # for every time point and adjusted P, compute the equilibrium group size distribution
    for a_, P_, _k_ in zip(new_alpha, new_P, k):
        if P_ > 0:
            g_ = a_ / P_
        else:
            g_ = 0
        p_k = degree_distribution(N, P_)
        _k_ = p_k.dot(ks)
        _k2_ = p_k.dot(ks**2)
        omega = 2 * g_ * (1 - P_ / (N - 1) * _k2_ / _k_)
        lambda_1 = 2 * a_
        this_distro_c = omega * np.exp(-tau * omega)
        this_distro_ic = lambda_1 * np.exp(-lambda_1 * tau)
        distro_c.append(this_distro_c)
        distro_ic.append(this_distro_ic)

    # compute the mean group size distribution as a time integral over the
    # group size distribution
    distro_c = np.array(distro_c)
    distro_ic = np.array(distro_ic)
    mean_distro_c = np.trapz(distro_c, x=new_t,
                             axis=0) / (new_t[-1] - new_t[0])
    mean_distro_ic = np.trapz(distro_ic, x=new_t,
                              axis=0) / (new_t[-1] - new_t[0])

    return mean_distro_c, mean_distro_ic
Exemplo n.º 5
0
def flockwork_P_group_life_time_distributions_for_varying_alpha_beta(
        tau,
        max_group_size,
        N,
        k_initial,
        t,
        alpha,
        beta,
        tmax,
        min_group_size=2,
        sampling_points=10):
    r"""Compute the mean group size distribution for a Flockwork-P system with varying rates.

    Parameters
    ----------
    tau : numpy.ndarray of float
        durations for which to evaluate the probability density
    max_group_size : int
        until which group size the life time distribution should be computed
    N : int
        Number of nodes
    k_initial : float
        initial mean degree
    t : numpy.ndarray of float
        time points at which :math:`\alpha(t)` and 
        :math:`\beta(t)` change
    alpha : numpy.ndarray of float
        active reconnection rate associated with
        the time points in ``t``
    beta : numpy.ndarray of float
        active disconnection rate associated with
        the time points in ``t``
    tmax : float
        final time
    min_group_size : int, default : 2
        min group size the life time distribution should be computed for
    sampling_points : int, default : 10
        how many points to sample in between two time points in `t`


    Returns
    -------
    P_taus : list of numpy.ndarray
        list of Mean probability density of values at ``tau`` (contact duration)
    """

    # estimate mean degree from integrating ODE
    new_t, k = flockwork_P_mean_degree_for_varying_alpha_beta(
        N, k_initial, t, alpha, beta, tmax, sampling_points)

    # from equilibrium assumption k = P/(1-P) compute adjusted P
    new_P = k / (k + 1)
    gamma = alpha + beta
    #new_gamma = tc.sample_a_function(t, gamma, new_t)
    new_alpha = tc.sample_a_function(t, alpha, new_t)

    distros = [[] for m in range(min_group_size, max_group_size + 1)]

    ks = np.arange(N)
    # for every time point and adjusted P, compute the equilibrium group size distribution
    for a_, P_, _k_ in zip(new_alpha, new_P, k):
        if P_ > 0:
            g_ = a_ / P_
        else:
            g_ = 0

        for m in range(min_group_size, max_group_size + 1):
            lambda_m = m * g_ * (1 - P_) + 2 * a_ * m * (N - m) / (N - 1.0)
            y = lambda_m * np.exp(-lambda_m * tau)
            distros[m - min_group_size].append(y)

    mean_distros = []
    for m in range(min_group_size, max_group_size + 1):
        dist = np.array(distros[m - min_group_size])
        mean_distros.append(
            np.trapz(dist, x=new_t, axis=0) / (new_t[-1] - new_t[0]))

    return mean_distros
Exemplo n.º 6
0
if __name__ == "__main__":

    import matplotlib.pyplot as pl

    orig = tc.load_json_taco('~/.tacoma/ht09.taco')
    orig_binned = tc.bin(orig,20.)
    result = tc.measure_group_sizes_and_durations(orig_binned)

    n_bins = 100

    durations = np.array(result.group_durations[1]) / 3600.

    bins = np.append([0.],np.logspace(log10(durations.min())-1,log10(durations.max()),n_bins) )

    x, y = get_ccdf(durations)
    y_sampled = tc.sample_a_function(x,y,bins)

    print("====== HEAD ======")

    print("original", x[:4], y[:4])
    print("sampled", bins[:4], y_sampled[:4])

    print("====== TAIL ======")
    print("original", x[-4:], y[-4:])
    print("sampled", bins[-4:], y_sampled[-4:])

    fig, ax = pl.subplots(1,2)

    ax[0].step(x,y,where='post')
    ax[0].plot(bins, y_sampled)