Exemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default="glue_data/STS-B",
                        type=str,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default="bert-base-uncased", type=str,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default="sts",
                        type=str,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default="sts",
                        type=str,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--tagger_path", default=None, type=str,
                        help="tagger_path for predictions if needing real-time tagging. Default: None, by loading pre-tagged data")

    ## Other parameters
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "sts": STSProcessor,
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval and not args.do_predict:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    #num_labels = num_labels_task[task_name]
    label_list = None
    # num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    if args.tagger_path != None:
        srl_predictor = SRLPredictor(args.tagger_path)
    else:
        srl_predictor = None
    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    train_features = None
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer,srl_predictor=srl_predictor )
        #TagTokenizer.make_tag_vocab("tag_vocab", tag_vocab)
    tag_tokenizer = TagTokenizer("tag_vocab")
    vocab_size = len(tag_tokenizer.ids_to_tags)
    print("tokenizer vocab size: ", str(vocab_size))
    tag_config = TagConfig(tag_vocab_size=vocab_size,
                           hidden_size=10,
                           layer_num=1,
                           output_dim=10,
                           dropout_prob=0.1,
                           num_aspect=3)
    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank))
    model = BertForSequenceScoreTag.from_pretrained(args.bert_model,
              cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank),tag_config=tag_config)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    best_epoch = 0
    best_result = 0.0
    if args.do_train:
        train_features = transform_tag_features(train_features, tag_tokenizer, args.max_seq_length)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)
        all_start_end_idx = torch.tensor([f.orig_to_token_split_idx for f in train_features], dtype=torch.long)
        all_input_tag_ids = torch.tensor([f.input_tag_ids for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_end_idx, all_input_tag_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
        eval_dataloader = None
        if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer,srl_predictor=srl_predictor )
            eval_features = transform_tag_features(eval_features, tag_tokenizer, args.max_seq_length)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
            all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)
            all_start_end_idx = torch.tensor([f.orig_to_token_split_idx for f in eval_features], dtype=torch.long)
            all_input_tag_ids = torch.tensor([f.input_tag_ids for f in eval_features], dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_end_idx, all_input_tag_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, start_end_idx, input_tag_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, start_end_idx, input_tag_ids,  label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            # Save a trained model
            model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(args.output_dir, str(epoch)+"_pytorch_model.bin")
            if args.do_train:
                torch.save(model_to_save.state_dict(), output_model_file)
            if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
                model_state_dict = torch.load(output_model_file)
                predict_model = BertForSequenceScoreTag.from_pretrained(args.bert_model, state_dict=model_state_dict,tag_config=tag_config)
                predict_model.to(device)
                predict_model.eval()
                eval_loss, eval_accuracy = 0, 0
                nb_eval_steps, nb_eval_examples = 0, 0
                total_pred, total_labels = [],[]
                total_TP, total_FP, total_FN, total_TN = 0, 0, 0, 0
                for input_ids, input_mask, segment_ids, start_end_idx, input_tag_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)
                    start_end_idx = start_end_idx.to(device)
                    input_tag_ids = input_tag_ids.to(device)
                    with torch.no_grad():
                        tmp_eval_loss = predict_model(input_ids, segment_ids, input_mask, start_end_idx, input_tag_ids, label_ids)
                        logits = predict_model(input_ids, segment_ids, input_mask, start_end_idx,  input_tag_ids, None)

                    logits = logits.detach().cpu().numpy()
                    label_ids = label_ids.to('cpu').numpy()
                    eval_loss += tmp_eval_loss.mean().item()
                    total_pred.extend(logits.squeeze().tolist())
                    total_labels.extend(label_ids.squeeze().tolist())
                    nb_eval_examples += input_ids.size(0)
                    nb_eval_steps += 1
                del predict_model
                eval_loss = eval_loss / nb_eval_steps
                spear = spearmanr(total_pred, total_labels)
                pear = pearsonr(total_pred, total_labels)
                mse = mean_squared_error(total_pred, total_labels)
                loss = tr_loss / nb_tr_steps if args.do_train else None
                result = {'eval_loss': eval_loss,
                          'global_step': global_step,
                          'spearson':spear,
                          'pearson':pear,
                          'mse':mse,
                          'loss': loss}

                if pear[0] > best_result:
                    best_epoch = epoch
                    best_result = pear[0]

                output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
                with open(output_eval_file, "a") as writer:
                    logger.info("***** Eval results *****")
                    for key in sorted(result.keys()):
                        logger.info("Epoch: %s,  %s = %s", str(epoch), key, str(result[key]))
                        writer.write("Epoch: %s, %s = %s\n" % (str(epoch), key, str(result[key])))
            logger.info("best epoch: %s, result:  %s", str(best_epoch), str(best_result))

    if args.do_predict:
        eval_examples = processor.get_test_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer,srl_predictor=srl_predictor )
        eval_features = transform_tag_features(eval_features, tag_tokenizer, args.max_seq_length)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_start_end_idx = torch.tensor([f.orig_to_token_split_idx for f in eval_features], dtype=torch.long)
        all_input_tag_ids = torch.tensor([f.input_tag_ids for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_end_idx,
                                  all_input_tag_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        output_model_file = os.path.join(args.output_dir, str(best_epoch)+ "_pytorch_model.bin")
        model_state_dict = torch.load(output_model_file)
        predict_model = BertForSequenceScoreTag.from_pretrained(args.bert_model, state_dict=model_state_dict,tag_config=tag_config)
        predict_model.to(device)
        predict_model.eval()
        predictions = []
        for input_ids, input_mask, segment_ids, start_end_idx, input_tag_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            start_end_idx = start_end_idx.to(device)
            input_tag_ids = input_tag_ids.to(device)
            with torch.no_grad():
                logits = predict_model(input_ids, segment_ids, input_mask, start_end_idx, input_tag_ids, None)
            logits = logits.detach().cpu().numpy()
            for (i, prediction) in enumerate(logits):
                predict_label = prediction.squeeze()
                predictions.append(predict_label)

        output_test_file = os.path.join(args.output_dir, "pred_results.txt")
        index = 0
        with open(output_test_file, "a") as writer:
            writer.write("index" + "\t" + "prediction" + "\n")
            for pred in predictions:
                writer.write(str(index) + "\t" + str(pred) + "\n")
                index += 1
Exemplo n.º 2
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default="glue_data/MNLI/",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default="mnli",
                        type=str,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default="base_mnli",
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument(
        "--tagger_path",
        default=None,
        type=str,
        help=
        "tagger_path for predictions if needing real-time tagging. Default: None, by loading pre-tagged data"
        "For example, the trained models by AllenNLP")
    parser.add_argument("--max_num_aspect",
                        default=3,
                        type=int,
                        help="max_num_aspect")

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "snli": SnliProcessor,
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)
    if args.tagger_path != None:
        srl_predictor = SRLPredictor(args.tagger_path)
    else:
        srl_predictor = None

    tag_tokenizer = TagTokenizer()
    vocab_size = len(tag_tokenizer.ids_to_tags)
    print("tokenizer vocab size: ", str(vocab_size))
    tag_config = TagConfig(tag_vocab_size=vocab_size,
                           hidden_size=10,
                           layer_num=1,
                           output_dim=10,
                           dropout_prob=0.1,
                           num_aspect=args.max_num_aspect)

    # Prepare optimizer

    if args.do_eval:
        # for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples,
            label_list,
            args.max_seq_length,
            tokenizer,
            srl_predictor=srl_predictor)
        eval_features = transform_tag_features(args.max_num_aspect,
                                               eval_features, tag_tokenizer,
                                               args.max_seq_length)

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        all_start_end_idx = torch.tensor(
            [f.orig_to_token_split_idx for f in eval_features],
            dtype=torch.long)
        all_input_tag_ids = torch.tensor(
            [f.input_tag_ids for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_start_end_idx,
                                  all_input_tag_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        # epoch = 1
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        model_state_dict = torch.load(output_model_file)
        predict_model = BertForSequenceClassificationTag.from_pretrained(
            args.bert_model,
            state_dict=model_state_dict,
            num_labels=num_labels,
            tag_config=tag_config)
        predict_model.to(device)
        predict_model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, start_end_idx, input_tag_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            start_end_idx = start_end_idx.to(device)
            input_tag_ids = input_tag_ids.to(device)
            with torch.no_grad():
                tmp_eval_loss = predict_model(input_ids, segment_ids,
                                              input_mask, start_end_idx,
                                              input_tag_ids, label_ids)
                logits = predict_model(input_ids, segment_ids, input_mask,
                                       start_end_idx, input_tag_ids, None)
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy}
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "a") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("Result:  %s = %s", key, str(result[key]))
                writer.write("Result: %s = %s\n" % (key, str(result[key])))
        logger.info("result:  %s", str(result))

    if args.do_predict:
        eval_examples = processor.get_test_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples,
            label_list,
            args.max_seq_length,
            tokenizer,
            srl_predictor=srl_predictor)
        eval_features = transform_tag_features(args.max_num_aspect,
                                               eval_features, tag_tokenizer,
                                               args.max_seq_length)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_start_end_idx = torch.tensor(
            [f.orig_to_token_split_idx for f in eval_features],
            dtype=torch.long)
        all_input_tag_ids = torch.tensor(
            [f.input_tag_ids for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_start_end_idx,
                                  all_input_tag_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        model_state_dict = torch.load(output_model_file)
        predict_model = BertForSequenceClassificationTag.from_pretrained(
            args.bert_model,
            state_dict=model_state_dict,
            num_labels=num_labels,
            tag_config=tag_config)
        predict_model.to(device)
        predict_model.eval()
        predictions = []

        for input_ids, input_mask, segment_ids, start_end_idx, input_tag_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            start_end_idx = start_end_idx.to(device)
            input_tag_ids = input_tag_ids.to(device)
            with torch.no_grad():
                logits = predict_model(input_ids, segment_ids, input_mask,
                                       start_end_idx, input_tag_ids, None)
            logits = logits.detach().cpu().numpy()
            for (i, prediction) in enumerate(logits):
                predict_label = np.argmax(prediction)
                predictions.append(predict_label)

        output_test_file = os.path.join(args.output_dir, "_pred_results.tsv")
        index = 0
        with open(output_test_file, "w") as writer:
            writer.write("index" + "\t" + "prediction" + "\n")
            for pred in predictions:
                writer.write(
                    str(index) + "\t" + str(label_list[int(pred)]) + "\n")
                index += 1