Exemplo n.º 1
0
def ext_arr_to_matrix(arr: ext_arr(), mat: template(), as_vector: template()):
    for I in grouped(mat):
        for p in static(range(mat.n)):
            for q in static(range(mat.m)):
                if static(as_vector):
                    mat[I][p] = arr[I, p]
                else:
                    mat[I][p, q] = arr[I, p, q]
Exemplo n.º 2
0
def ndarray_matrix_to_ext_arr(ndarray: any_arr(), arr: ext_arr(),
                              as_vector: template()):
    for I in grouped(ndarray):
        for p in static(range(ndarray[I].n)):
            for q in static(range(ndarray[I].m)):
                if static(as_vector):
                    arr[I, p] = ndarray[I][p]
                else:
                    arr[I, p, q] = ndarray[I][p, q]
Exemplo n.º 3
0
def matrix_to_ext_arr(mat: template(), arr: ndarray_type.ndarray(),
                      as_vector: template()):
    for I in grouped(mat):
        for p in static(range(mat.n)):
            for q in static(range(mat.m)):
                if static(as_vector):
                    arr[I, p] = mat[I][p]
                else:
                    arr[I, p, q] = mat[I][p, q]
Exemplo n.º 4
0
 def outer_product(self, other):
     impl.static(
         impl.static_assert(self.m == 1,
                            "lhs for outer_product is not a vector"))
     impl.static(
         impl.static_assert(other.m == 1,
                            "rhs for outer_product is not a vector"))
     ret = Matrix([[self[i] * other[j] for j in range(other.n)]
                   for i in range(self.n)])
     return ret
Exemplo n.º 5
0
def _gauss_elimination_3x3(Ab, dt):
    for i in static(range(3)):
        max_row = i
        max_v = ops.abs(Ab[i, i])
        for j in static(range(i + 1, 3)):
            if ops.abs(Ab[j, i]) > max_v:
                max_row = j
                max_v = ops.abs(Ab[j, i])
        assert max_v != 0.0, "Matrix is singular in linear solve."
        if i != max_row:
            if max_row == 1:
                for col in static(range(4)):
                    Ab[i, col], Ab[1, col] = Ab[1, col], Ab[i, col]
            else:
                for col in static(range(4)):
                    Ab[i, col], Ab[2, col] = Ab[2, col], Ab[i, col]
        assert Ab[i, i] != 0.0, "Matrix is singular in linear solve."
        for j in static(range(i + 1, 3)):
            scale = Ab[j, i] / Ab[i, i]
            Ab[j, i] = 0.0
            for k in static(range(i + 1, 4)):
                Ab[j, k] -= Ab[i, k] * scale
    # Back substitution
    x = Vector.zero(dt, 3)
    for i in static(range(2, -1, -1)):
        x[i] = Ab[i, 3]
        for k in static(range(i + 1, 3)):
            x[i] -= Ab[i, k] * x[k]
        x[i] = x[i] / Ab[i, i]
    return x
Exemplo n.º 6
0
    def dot(self, other):
        """Perform the dot product with the input Vector (1-D Matrix).

        Args:
            other (:class:`~taichi.lang.matrix.Matrix`): The input Vector (1-D Matrix) to perform the dot product.

        Returns:
            DataType: The dot product result (scalar) of the two Vectors.

        """
        impl.static(
            impl.static_assert(self.m == 1, "lhs for dot is not a vector"))
        impl.static(
            impl.static_assert(other.m == 1, "rhs for dot is not a vector"))
        return (self * other).sum()
Exemplo n.º 7
0
def solve(A, b, dt=None):
    """Solve a matrix using Gauss elimination method.

    Args:
        A (ti.Matrix(n, n)): input nxn matrix `A`.
        b (ti.Vector(n, 1)): input nx1 vector `b`.
        dt (DataType): The datatype for the `A` and `b`.

    Returns:
        x (ti.Vector(n, 1)): the solution of Ax=b.
    """
    assert A.n == A.m, "Only sqaure matrix is supported"
    assert A.n >= 2 and A.n <= 3, "Only 2D and 3D matrices are supported"
    assert A.m == b.n, "Matrix and Vector dimension dismatch"
    if dt is None:
        dt = impl.get_runtime().default_fp
    nrow, ncol = static(A.n, A.n + 1)
    Ab = expr_init(Matrix.zero(dt, nrow, ncol))
    lhs = tuple([e.ptr for e in A.entries])
    rhs = tuple([e.ptr for e in b.entries])
    for i in range(nrow):
        for j in range(nrow):
            Ab(i, j)._assign(lhs[nrow * i + j])
    for i in range(nrow):
        Ab(i, nrow)._assign(rhs[i])
    if A.n == 2:
        return _gauss_elimination_2x2(Ab, dt)
    if A.n == 3:
        return _gauss_elimination_3x3(Ab, dt)
    raise Exception("Solver only supports 2D and 3D matrices.")
Exemplo n.º 8
0
def ndarray_matrix_to_ext_arr(ndarray: ndarray_type.ndarray(),
                              arr: ndarray_type.ndarray(),
                              layout_is_aos: template(),
                              as_vector: template()):
    for I in grouped(ndarray):
        for p in static(range(ndarray[I].n)):
            for q in static(range(ndarray[I].m)):
                if static(as_vector):
                    if static(layout_is_aos):
                        arr[I, p] = ndarray[I][p]
                    else:
                        arr[p, I] = ndarray[I][p]
                else:
                    if static(layout_is_aos):
                        arr[I, p, q] = ndarray[I][p, q]
                    else:
                        arr[p, q, I] = ndarray[I][p, q]
Exemplo n.º 9
0
def _matrix_outer_product(self, other):
    """Perform the outer product with the input Vector (1-D Matrix).

    Args:
        other (:class:`~taichi.lang.matrix.Matrix`): The input Vector (1-D Matrix) to perform the outer product.

    Returns:
        :class:`~taichi.lang.matrix.Matrix`: The outer product result (Matrix) of the two Vectors.

    """
    impl.static(
        impl.static_assert(self.m == 1,
                           "lhs for outer_product is not a vector"))
    impl.static(
        impl.static_assert(other.m == 1,
                           "rhs for outer_product is not a vector"))
    return matrix.Matrix([[self[i] * other[j] for j in range(other.n)]
                          for i in range(self.n)])
Exemplo n.º 10
0
    def normalized(self, eps=0):
        """Normalize a vector.

        Args:
            eps (Number): a safe-guard value for sqrt, usually 0.

        Examples::

            a = ti.Vector([3, 4])
            a.normalized() # [3 / 5, 4 / 5]
            # `a.normalized()` is equivalent to `a / a.norm()`.

        Note:
            Only vector normalization is supported.

        """
        impl.static(
            impl.static_assert(self.m == 1,
                               "normalized() only works on vector"))
        invlen = 1 / (self.norm() + eps)
        return invlen * self
Exemplo n.º 11
0
def _svd(A, dt):
    """Perform singular value decomposition (A=USV^T) for arbitrary size matrix.

    Mathematical concept refers to https://en.wikipedia.org/wiki/Singular_value_decomposition.
    2D implementation refers to :func:`taichi.svd2d`.
    3D implementation refers to :func:`taichi.svd3d`.

    Args:
        A (ti.Matrix(n, n)): input nxn matrix `A`.
        dt (DataType): date type of elements in matrix `A`, typically accepts ti.f32 or ti.f64.

    Returns:
        Decomposed nxn matrices `U`, 'S' and `V`.
    """
    if static(A.n == 2):  # pylint: disable=R1705
        ret = svd2d(A, dt)
        return ret
    elif static(A.n == 3):
        return svd3d(A, dt)
    else:
        raise Exception("SVD only supports 2D and 3D matrices.")
Exemplo n.º 12
0
def _polar_decompose(A, dt):
    """Perform polar decomposition (A=UP) for arbitrary size matrix.

    Mathematical concept refers to https://en.wikipedia.org/wiki/Polar_decomposition.
    2D implementation refers to :func:`taichi.polar_decompose2d`.
    3D implementation refers to :func:`taichi.polar_decompose3d`.

    Args:
        A (ti.Matrix(n, n)): input nxn matrix `A`.
        dt (DataType): date type of elements in matrix `A`, typically accepts ti.f32 or ti.f64.

    Returns:
        Decomposed nxn matrices `U` and `P`.
    """
    if static(A.n == 2):  # pylint: disable=R1705
        ret = polar_decompose2d(A, dt)
        return ret
    elif static(A.n == 3):
        return polar_decompose3d(A, dt)
    else:
        raise Exception(
            "Polar decomposition only supports 2D and 3D matrices.")
Exemplo n.º 13
0
def vector_to_fast_image(img: template(), out: ndarray_type.ndarray()):
    # FIXME: Why is ``for i, j in img:`` slower than:
    for i, j in ndrange(*img.shape):
        r, g, b = 0, 0, 0
        color = img[i, img.shape[1] - 1 - j]
        if static(img.dtype in [f16, f32, f64]):
            r, g, b = min(255, max(0, int(color * 255)))
        else:
            static_assert(img.dtype == u8)
            r, g, b = color
        idx = j * img.shape[0] + i
        # We use i32 for |out| since OpenGL and Metal doesn't support u8 types
        if static(get_os_name() != 'osx'):
            out[idx] = (r << 16) + (g << 8) + b
        else:
            # What's -16777216?
            #
            # On Mac, we need to set the alpha channel to 0xff. Since Mac's GUI
            # is big-endian, the color is stored in ABGR order, and we need to
            # add 0xff000000, which is -16777216 in I32's legit range. (Albeit
            # the clarity, adding 0xff000000 doesn't work.)
            alpha = -16777216
            out[idx] = (b << 16) + (g << 8) + r + alpha
Exemplo n.º 14
0
def _gauss_elimination_2x2(Ab, dt):
    if ops.abs(Ab[0, 0]) < ops.abs(Ab[1, 0]):
        Ab[0, 0], Ab[1, 0] = Ab[1, 0], Ab[0, 0]
        Ab[0, 1], Ab[1, 1] = Ab[1, 1], Ab[0, 1]
        Ab[0, 2], Ab[1, 2] = Ab[1, 2], Ab[0, 2]
    assert Ab[0, 0] != 0.0, "Matrix is singular in linear solve."
    scale = Ab[1, 0] / Ab[0, 0]
    Ab[1, 0] = 0.0
    for k in static(range(1, 3)):
        Ab[1, k] -= Ab[0, k] * scale
    x = Vector.zero(dt, 2)
    # Back substitution
    x[1] = Ab[1, 2] / Ab[1, 1]
    x[0] = (Ab[0, 2] - Ab[0, 1] * x[1]) / Ab[0, 0]
    return x
Exemplo n.º 15
0
def vector_to_image(mat: template(), arr: ndarray_type.ndarray()):
    for I in grouped(mat):
        for p in static(range(mat.n)):
            arr[I, p] = ops.cast(mat[I][p], f32)
            if static(mat.n <= 2):
                arr[I, 2] = 0
Exemplo n.º 16
0
 def normalized(self, eps=0):
     impl.static(
         impl.static_assert(self.m == 1,
                            "normalized() only works on vector"))
     invlen = 1 / (self.norm() + eps)
     return invlen * self
Exemplo n.º 17
0
 def dot(self, other):
     impl.static(
         impl.static_assert(self.m == 1, "lhs for dot is not a vector"))
     impl.static(
         impl.static_assert(other.m == 1, "rhs for dot is not a vector"))
     return (self * other).sum()
Exemplo n.º 18
0
def fill_matrix(mat: template(), vals: template()):
    for I in grouped(mat):
        for p in static(range(mat.n)):
            for q in static(range(mat.m)):
                mat[I][p, q] = vals[p][q]
Exemplo n.º 19
0
def clear_gradients(_vars: template()):
    for I in grouped(ScalarField(Expr(_vars[0]))):
        for s in static(_vars):
            ScalarField(Expr(s))[I] = 0