Exemplo n.º 1
0
Arquivo: vwma.py Projeto: stockec/siis
    def VWMA_n(N, prices, volumes):
        # cannot deal with zero volume, then set it to 1 will have no effect on the result, juste give a price
        for i, v in enumerate(volumes):
            if v <= 0:
                volumes[i] = 1.0

        # pvs = MM_n(N, np.array(prices)*np.array(volumes))
        pvs = ta_SMA(np.array(prices) * np.array(volumes), N)
        # vs = MM_n(N, volumes)
        vs = ta_SMA(volumes, N)

        return pvs / vs
Exemplo n.º 2
0
Arquivo: bbawe.py Projeto: rptrk/siis
    def compute(self, timestamp, high, low, close):
        # Breakout Indicator Inputs
        bb_basis = ta_EMA(close, self._bb_L) if self._use_EMA else ta_SMA(
            close, self._bb_L)
        fast_ma = ta_EMA(close, self._fast_MA_L)

        # Deviation (a simple BBAND)
        # dev = ta_STDDEV(close, self._bb_L)
        # bb_dev_inner = self._base_multiplier * dev

        # Upper bands
        # inner_high = bb_basis + bb_dev_inner
        # Lower Bands
        # inner_low = bb_basis - bb_dev_inner

        # Calculate Awesome Oscillator
        hl2 = (high + low) * 0.5

        xSMA1_hl2 = ta_SMA(hl2, self._awesome_fast_L)
        xSMA2_hl2 = ta_SMA(hl2, self._awesome_slow_L)
        xSMA1_SMA2 = xSMA1_hl2 - xSMA2_hl2

        # Calculate direction of AO
        if xSMA1_SMA2[-1] >= 0:
            if xSMA1_SMA2[-1] > xSMA1_SMA2[-2]:
                AO = 1
            else:
                AO = 2
        else:
            if xSMA1_SMA2[-1] > xSMA1_SMA2[-2]:
                AO = -1
            else:
                AO = -2

        # Calc breakouts
        break_down = crossunder(
            fast_ma,
            bb_basis) and close[-1] < bb_basis[-1] and AO < 0  # abs(AO)==2
        break_up = crossover(
            fast_ma,
            bb_basis) and close[-1] > bb_basis[-1] and AO > 0  # abs(AO)==1

        self._signal = 1 if break_up else -1 if break_down else 0

        self._last_timestamp = timestamp

        return self._signal
Exemplo n.º 3
0
Arquivo: sma.py Projeto: venkiiee/siis
    def compute(self, timestamp, prices):
        self._prev = self._last

        # self._smas = SMAIndicator.SMA_n_sf(self._length, prices)  # , self._step, self._filtering)
        # self._smas = MM_n(self._length, prices)
        self._smas = ta_SMA(prices, self._length)
        self._last = self._smas[-1]

        self._last_timestamp = timestamp

        return self._smas
Exemplo n.º 4
0
    def compute(self, timestamp, high, low, close):
        # Breakout Indicator Inputs
        bb_basis = ta_EMA(close, self._bb_L) if self._use_EMA else ta_SMA(
            close, self._bb_L)
        fast_ma = ta_EMA(close, self._fast_MA_L)

        # Calculate Awesome Oscillator
        hl2 = (high + low) * 0.5

        xSMA1_hl2 = ta_SMA(hl2, self._awesome_fast_L)
        xSMA2_hl2 = ta_SMA(hl2, self._awesome_slow_L)
        xSMA1_SMA2 = xSMA1_hl2 - xSMA2_hl2

        # Calculate direction of AO
        if xSMA1_SMA2[-1] >= 0:
            if xSMA1_SMA2[-1] > xSMA1_SMA2[-2]:
                AO = 1
            else:
                AO = 2
        else:
            if xSMA1_SMA2[-1] > xSMA1_SMA2[-2]:
                AO = -1
            else:
                AO = -2

        # Calc breakouts
        break_down = crossunder(
            fast_ma,
            bb_basis) and close[-1] < bb_basis[-1] and AO < 0  # abs(AO)==2
        break_up = crossover(
            fast_ma,
            bb_basis) and close[-1] > bb_basis[-1] and AO > 0  # abs(AO)==1

        self._signal = 1 if break_up else -1 if break_down else 0

        self._last_timestamp = timestamp

        return self._signal
Exemplo n.º 5
0
Arquivo: hma.py Projeto: stockec/siis
    def HMA_n(N, data):
        N_2 = int(N / 2)
        N_sqrt = int(math.sqrt(N))

        weights = np.array([x for x in range(1, len(data)+1)])

        # 1) calculate a WMA with period n / 2 and multiply it by 2
        # hma12 = 2 * MM_n(N_2, data*weights) / MM_n(N_2, weights)
        hma12 = 2 * ta_SMA(data*weights, N_2) / ta_SMA(weights, N_2)

        # 2) calculate a WMA for period n and subtract if from step 1
        # hma12 = hma12 - (MM_n(N, data*weights) / MM_n(N, weights))
        hma12 = hma12 - (ta_SMA(data*weights, N) / ta_SMA(weights, N))

        # 3) calculate a WMA with period sqrt(n) using the data from step 2
        # hma = (MM_n(N_sqrt, hma12*weights) / MM_n(N_sqrt, weights))
        hma = (ta_SMA(hma12*weights, N_sqrt) / ta_SMA(weights, N_sqrt))

        return hma
Exemplo n.º 6
0
    def compute(self, timestamp, timestamps, high, low, close):
        size = len(close)

        basis = ta_SMA(close, self._length)
        atrs = ta_ATR(high, low, close, timeperiod=self._length)

        dev = atrs * self._coeff
        upper = basis + dev
        lower = basis - dev

        bbr = (close - lower) / (upper - lower)
        bbe = ta_EMA(bbr, self._length_MA)

        if len(self._tup) != size:
            self._tup = np.zeros(size)
            self._tdn = np.zeros(size)

        for i in range(2, size):
            if bbe[i - 1] > bbe[i] and bbe[i - 2] < bbe[i - 1]:
                last = self._tup[i] = bbe[i]
            else:
                self._tup[i] = np.NaN

        for i in range(2, size):
            if bbe[i - 1] < bbe[i] and bbe[i - 2] < bbe[i - 1]:
                self._tdn[i] = bbe[i]
            else:
                self._tdn[i] = np.NaN

        highest = ta_MAX(high, 3)
        lowest = ta_MIN(low, 3)

        last_up = 0.0
        last_dn = 0.0

        for i in range(0, size):
            if not np.isnan(self._tup[i]):
                last_up = self._tup[i] = highest[i]
            else:
                self._tup[i] = last_up

            if not np.isnan(self._tdn[i]):
                last_dn = self._tdn[i] = lowest[i]
            else:
                self._tdn[i] = last_dn

        # compact timeserie
        delta = min(int((timestamp - self._last_timestamp) / self._timeframe),
                    len(timestamps))

        # base index
        num = len(timestamps)

        for b in range(num - delta, num):
            if timestamps[b] > self._last_timestamp:
                if b > 0:
                    last_up = self._tup[b - 1]
                    last_dn = self._tdn[b - 1]
                else:
                    last_up = 0.0
                    last_dn = 0.0

                if not np.isnan(self._tup[b]) and self._tup[b] != last_up:
                    last_up = self._tup[b]
                    self._up.append(last_up)
                    self._both.append(last_up)

                    if len(self._up) > self._max_history:
                        self._up.pop(0)

                    if len(self._both) > 2 * self._max_history:
                        self._both.pop(0)

                if not np.isnan(self._tdn[b]) and self._tdn[b] != last_dn:
                    last_dn = self._tdn[b]
                    self._down.append(last_dn)
                    self._both.append(last_dn)

                    if len(self._down) > self._max_history:
                        self._down.pop(0)

                    if len(self._both) > 2 * self._max_history:
                        self._both.pop(0)

        # logger.info("%s %s" % (self._tup, self._tdn))
        # logger.info("%s %s" % (self._up, self._down))
        # logger.info("%s" % (self._both))

        self._last_timestamp = timestamp

        return self._up, self._down
Exemplo n.º 7
0
    def compute(self, timestamp, timestamps, high, low, close):
        size = len(close)

        basis = ta_SMA(close, self._length)
        atrs = ta_ATR(high, low, close, timeperiod=self._length)

        dev = atrs * self._coeff
        upper = basis + dev
        lower = basis - dev

        with np.errstate(divide='ignore', invalid='ignore'):
            # replace by 0 when divisor is 0
            bbr = (close - lower) / (upper - lower)
            bbr[bbr == np.inf] = 0.0

        bbe = ta_EMA(bbr, self._length_MA)

        if len(self._tup) != size:
            self._tup = np.zeros(size)
            self._tdn = np.zeros(size)

            self._tup[0] = self._tup[1] = np.NaN
            self._tdn[0] = self._tdn[1] = np.NaN

        for i in range(2, size):
            if bbe[i - 1] > bbe[i] and bbe[i - 2] < bbe[i - 1]:
                self._tup[i] = bbe[i]
            else:
                self._tup[i] = np.NaN

        for i in range(2, size):
            if bbe[i - 1] < bbe[i] and bbe[i - 2] > bbe[i - 1]:
                self._tdn[i] = bbe[i]
            else:
                self._tdn[i] = np.NaN

        highest = ta_MAX(high, 3)
        lowest = ta_MIN(low, 3)

        last_up = 0.0
        last_dn = 0.0

        for i in range(2, size):
            if not np.isnan(self._tup[i]):
                last_up = self._tup[i] = highest[i]
            elif last_up > 0.0:
                self._tup[i] = last_up

            if not np.isnan(self._tdn[i]):
                last_dn = self._tdn[i] = lowest[i]
            elif last_dn > 0.0:
                self._tdn[i] = last_dn

        # logger.debug("%s %s %s" % (self._tdn[-3], self._tdn[-2], self._tdn[-1]))

        # logger.debug("%s - %s %s / %s %s %s /  %s %s %s / %s %s %s / %s %s %s" % (
        #     datetime.utcfromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S'),
        #     datetime.utcfromtimestamp(timestamps[-2]).strftime('%Y-%m-%d %H:%M:%S'),
        #     datetime.utcfromtimestamp(timestamps[-1]).strftime('%Y-%m-%d %H:%M:%S'),
        #     self._tdn[-3], self._tdn[-2], self._tdn[-1], close[-3], close[-2], close[-1], low[-3], low[-2], low[-1], lowest[-3], lowest[-2], lowest[-1]))

        # compact timeserie
        from_timestamp = Instrument.basetime(self.timeframe,
                                             self._last_timestamp)  # inclusive
        to_timestamp = Instrument.basetime(self.timeframe,
                                           timestamp)  # exclusive

        delta = min(
            int((to_timestamp - from_timestamp) / self._timeframe) + 1,
            len(timestamps))

        # base index
        num = len(timestamps)

        last_up = self._up[-1] if len(self._up) else np.NaN
        last_dn = self._down[-1] if len(self._down) else np.NaN

        # if len(self._tdn) and not np.isnan(self._tdn[-1]) and self._tdn[-1] != last_dn:
        #     self._down.append(self._tdn[-1])
        #     last_dn = self._tdn[-1]
        #     logger.info("> %s %s" % (datetime.utcfromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S'), last_dn))

        # if len(self._tup) and not np.isnan(self._tup[-1]) and self._tup[-1] != last_up:
        #     self._up.append(self._tup[-1])

        for b in range(num - delta, num):
            # only most recent and complete
            if from_timestamp <= timestamps[b] < to_timestamp:
                if not np.isnan(
                        self._tup[b]
                ) and self._tup[b] != last_up and self._tup[b] > 0.0:
                    last_up = self._tup[b]

                    self._up.append(last_up)
                    self._both.append(last_up)

                    if len(self._up) > self._max_history:
                        self._up.pop(0)

                    if len(self._both) > 2 * self._max_history:
                        self._both.pop(0)

                if not np.isnan(
                        self._tdn[b]
                ) and self._tdn[b] != last_dn and self._tdn[b] > 0.0:
                    last_dn = self._tdn[b]
                    # logger.info("%s %s" % (datetime.utcfromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S'), last_dn))

                    self._down.append(last_dn)
                    self._both.append(last_dn)

                    if len(self._down) > self._max_history:
                        self._down.pop(0)

                    if len(self._both) > 2 * self._max_history:
                        self._both.pop(0)

        # if self.timeframe == 60:
        #    logger.info("%s %s" % (self._tup, self._tdn))
        #    logger.info("%s %s" % (self._up, self._down))
        # if self.timeframe == 60*60*24:
        #     logger.info("%s" % (self._both))

        if len(atrs):
            # retains last ATR value
            self._last_atr = atrs[-1]

        self._last_timestamp = timestamp

        return self._up, self._down