Exemplo n.º 1
0
def back_calc_peak_intensities(spin=None, exp_type=None, frq=None, offset=None, point=None):
    """Back-calculation of peak intensity for the given relaxation time.

    @keyword spin:      The specific spin data container.
    @type spin:         SpinContainer instance
    @keyword exp_type:  The experiment type.
    @type exp_type:     str
    @keyword frq:       The spectrometer frequency.
    @type frq:          float
    @keyword offset:    For R1rho-type data, the spin-lock offset value in ppm.
    @type offset:       None or float
    @keyword point:     The dispersion point data (either the spin-lock field strength in Hz or the nu_CPMG frequency in Hz).
    @type point:        float
    @return:            The back-calculated peak intensities for the given exponential curve.
    @rtype:             numpy rank-1 float array
    """

    # Check.
    if not has_exponential_exp_type():
        raise RelaxError("Back-calculation is not allowed for the fixed time experiment types.")

    # The key.
    param_key = return_param_key_from_data(exp_type=exp_type, frq=frq, offset=offset, point=point)

    # Create the initial parameter vector.
    param_vector = assemble_param_vector(spins=[spin], key=param_key)

    # The peak intensities and times.
    values = []
    errors = []
    times = []
    for time in loop_time(exp_type=exp_type, frq=frq, offset=offset, point=point):
        # The data.
        values.append(average_intensity(spin=spin, exp_type=exp_type, frq=frq, offset=offset, point=point, time=time))
        errors.append(average_intensity(spin=spin, exp_type=exp_type, frq=frq, offset=offset, point=point, time=time, error=True))
        times.append(time)

    # The scaling matrix in a diagonalised list form.
    scaling_list = []
    for i in range(len(param_vector)):
        scaling_list.append(1.0)

    # Initialise the relaxation fit functions.
    model = Relax_fit_opt(model='exp', num_params=len(spin.params), values=values, errors=errors, relax_times=times, scaling_matrix=scaling_list)

    # Make a single function call.  This will cause back calculation and the data will be stored in the C module.
    model.func(param_vector)

    # Get the data back.
    results = model.back_calc_data()

    # Return the correct peak height.
    return results
Exemplo n.º 2
0
def back_calc(spin=None, relax_time_id=None):
    """Back-calculation of peak intensity for the given relaxation time.

    @keyword spin:              The spin container.
    @type spin:                 SpinContainer instance
    @keyword relax_time_id:     The ID string for the desired relaxation time.
    @type relax_time_id:        str
    @return:                    The peak intensity for the desired relaxation time.
    @rtype:                     float
    """

    # Create the initial parameter vector.
    param_vector = assemble_param_vector(spin=spin)

    # The keys.
    keys = list(spin.peak_intensity.keys())

    # The peak intensities and times.
    values = []
    errors = []
    times = []
    for key in keys:
        values.append(spin.peak_intensity[key])
        errors.append(spin.peak_intensity_err[key])
        times.append(cdp.relax_times[key])

    # A fake scaling matrix in a diagonalised list form.
    scaling_list = []
    for i in range(len(param_vector)):
        scaling_list.append(1.0)

    # Initialise the relaxation fit functions.
    model = Relax_fit_opt(model=spin.model,
                          num_params=len(spin.params),
                          values=values,
                          errors=errors,
                          relax_times=times,
                          scaling_matrix=scaling_list)

    # Make a single function call.  This will cause back calculation and the data will be stored in the C module.
    model.func(param_vector)

    # Get the data back.
    results = model.back_calc_data()

    # Return the correct peak height.
    return results[keys.index(relax_time_id)]
Exemplo n.º 3
0
def back_calc(spin=None, relax_time_id=None):
    """Back-calculation of peak intensity for the given relaxation time.

    @keyword spin:              The spin container.
    @type spin:                 SpinContainer instance
    @keyword relax_time_id:     The ID string for the desired relaxation time.
    @type relax_time_id:        str
    @return:                    The peak intensity for the desired relaxation time.
    @rtype:                     float
    """

    # Create the initial parameter vector.
    param_vector = assemble_param_vector(spin=spin)

    # The keys.
    keys = list(spin.peak_intensity.keys())

    # The peak intensities and times.
    values = []
    errors = []
    times = []
    for key in keys:
        values.append(spin.peak_intensity[key])
        errors.append(spin.peak_intensity_err[key])
        times.append(cdp.relax_times[key])

    # A fake scaling matrix in a diagonalised list form.
    scaling_list = []
    for i in range(len(param_vector)):
        scaling_list.append(1.0)

    # Initialise the relaxation fit functions.
    model = Relax_fit_opt(model=spin.model, num_params=len(spin.params), values=values, errors=errors, relax_times=times, scaling_matrix=scaling_list)

    # Make a single function call.  This will cause back calculation and the data will be stored in the C module.
    model.func(param_vector)

    # Get the data back.
    results = model.back_calc_data()

    # Return the correct peak height.
    return results[keys.index(relax_time_id)]
Exemplo n.º 4
0
def back_calc_peak_intensities(spin=None, spin_id=None, exp_type=None, frq=None, offset=None, point=None):
    """Back-calculation of peak intensity for the given relaxation time.

    @keyword spin:      The specific spin data container.
    @type spin:         SpinContainer instance
    @keyword spin_id:   The optional spin ID string for use in warning messages.
    @type spin_id:      str or None
    @keyword exp_type:  The experiment type.
    @type exp_type:     str
    @keyword frq:       The spectrometer frequency.
    @type frq:          float
    @keyword offset:    For R1rho-type data, the spin-lock offset value in ppm.
    @type offset:       None or float
    @keyword point:     The dispersion point data (either the spin-lock field strength in Hz or the nu_CPMG frequency in Hz).
    @type point:        float
    @return:            The back-calculated peak intensities for the given exponential curve.
    @rtype:             numpy rank-1 float array
    """

    # Check.
    if not has_exponential_exp_type():
        raise RelaxError("Back-calculation is not allowed for the fixed time experiment types.")

    # The key.
    param_key = return_param_key_from_data(exp_type=exp_type, frq=frq, offset=offset, point=point)

    # Create the initial parameter vector.
    param_vector = assemble_param_vector(spins=[spin], key=param_key)

    # The peak intensities and times.
    values = []
    errors = []
    times = []
    for time in loop_time(exp_type=exp_type, frq=frq, offset=offset, point=point):
        # Check the peak intensity keys.
        int_keys = find_intensity_keys(exp_type=exp_type, frq=frq, offset=offset, point=point, time=time)
        for i in range(len(int_keys)):
            if int_keys[i] not in spin.peak_intensity:
                if spin_id:
                    warn(RelaxWarning("The spin %s peak intensity key '%s' is not present, skipping the back-calculation." % (spin_id, int_keys[i])))
                else:
                    warn(RelaxWarning("The peak intensity key '%s' is not present, skipping the back-calculation." % int_keys[i]))
                return

        # The data.
        values.append(average_intensity(spin=spin, exp_type=exp_type, frq=frq, offset=offset, point=point, time=time))
        errors.append(average_intensity(spin=spin, exp_type=exp_type, frq=frq, offset=offset, point=point, time=time, error=True))
        times.append(time)

    # The scaling matrix in a diagonalised list form.
    scaling_list = []
    for i in range(len(param_vector)):
        scaling_list.append(1.0)

    # Initialise the relaxation fit functions.
    model = Relax_fit_opt(model='exp', num_params=len(spin.params), values=values, errors=errors, relax_times=times, scaling_matrix=scaling_list)

    # Make a single function call.  This will cause back calculation and the data will be stored in the C module.
    model.func(param_vector)

    # Get the data back.
    results = model.back_calc_data()

    # Return the correct peak height.
    return results