Exemplo n.º 1
0
def test_luminance_levels_task():
    directory = '/tmp/removeme/luminance_levels/'
    layer_path = 'file://' + directory

    delete_layer(layer_path)

    storage, imgd = create_layer(size=(256, 256, 128, 1),
                                 offset=(0, 0, 0),
                                 layer_type="image",
                                 layer_name='luminance_levels')

    tq = MockTaskQueue()
    tasks = tc.create_luminance_levels_tasks(layer_path=layer_path,
                                             coverage_factor=0.01,
                                             shape=None,
                                             offset=(0, 0, 0),
                                             mip=0)
    tq.insert_all(tasks)

    gt = [0] * 256
    for x, y, z in lib.xyzrange((0, 0, 0), list(imgd.shape[:2]) + [1]):
        gt[imgd[x, y, 0, 0]] += 1

    with open('/tmp/removeme/luminance_levels/levels/0/0', 'rt') as f:
        levels = f.read()

    levels = json.loads(levels)
    assert levels['coverage_ratio'] == 1.0
    assert levels['levels'] == gt
Exemplo n.º 2
0
def test_downsample_no_offset(compression_method):
    delete_layer()
    storage, data = create_layer(size=(1024, 1024, 128, 1), offset=(0, 0, 0))
    cv = CloudVolume(storage.layer_path)
    assert len(cv.scales) == 1
    assert len(cv.available_mips) == 1

    cv.commit_info()

    tq = MockTaskQueue()
    tasks = create_downsampling_tasks(storage.layer_path,
                                      mip=0,
                                      num_mips=4,
                                      compress=compression_method)
    tq.insert_all(tasks)

    cv.refresh_info()

    assert len(cv.available_mips) == 5
    assert np.array_equal(cv.mip_volume_size(0), [1024, 1024, 128])
    assert np.array_equal(cv.mip_volume_size(1), [512, 512, 128])
    assert np.array_equal(cv.mip_volume_size(2), [256, 256, 128])
    assert np.array_equal(cv.mip_volume_size(3), [128, 128, 128])
    assert np.array_equal(cv.mip_volume_size(4), [64, 64, 128])

    slice64 = np.s_[0:64, 0:64, 0:64]

    cv.mip = 0
    assert np.all(cv[slice64] == data[slice64])

    data_ds1, = tinybrain.downsample_with_averaging(data, factor=[2, 2, 1, 1])
    cv.mip = 1
    assert np.all(cv[slice64] == data_ds1[slice64])

    data_ds2, = tinybrain.downsample_with_averaging(data, factor=[4, 4, 1, 1])
    cv.mip = 2
    assert np.all(cv[slice64] == data_ds2[slice64])

    data_ds3, = tinybrain.downsample_with_averaging(data, factor=[8, 8, 1, 1])
    cv.mip = 3
    assert np.all(cv[slice64] == data_ds3[slice64])

    data_ds4, = tinybrain.downsample_with_averaging(data,
                                                    factor=[16, 16, 1, 1])
    cv.mip = 4
    assert np.all(cv[slice64] == data_ds4[slice64])
Exemplo n.º 3
0
def test_skeletonization_task():
    directory = '/tmp/removeme/skeleton/'
    layer_path = 'file://' + directory
    delete_layer(layer_path)

    img = np.ones((256,256,256), dtype=np.uint64)
    img[:,:,:] = 2
    cv = CloudVolume.from_numpy(
        img,
        layer_type='segmentation',
        vol_path=layer_path, 
    )

    tq = MockTaskQueue()
    tasks = tc.create_skeletonizing_tasks(layer_path, mip=0, teasar_params={
        'scale': 10,
        'const': 10,
    })
    tq.insert_all(tasks)
Exemplo n.º 4
0
def test_downsample_higher_mip():
    delete_layer()
    storage, data = create_layer(size=(512, 512, 64, 1), offset=(3, 7, 11))
    cv = CloudVolume(storage.layer_path)
    cv.info['scales'] = cv.info['scales'][:1]

    tq = MockTaskQueue()

    cv.commit_info()
    tasks = create_downsampling_tasks(storage.layer_path, mip=0, num_mips=2)
    tq.insert_all(tasks)
    cv.refresh_info()
    assert len(cv.available_mips) == 3

    tasks = create_downsampling_tasks(storage.layer_path, mip=1, num_mips=2)
    tq.insert_all(tasks)
    cv.refresh_info()
    assert len(cv.available_mips) == 4

    cv.mip = 3
    assert cv[:, :, :].shape == (64, 64, 64, 1)
Exemplo n.º 5
0
def test_downsample_w_missing():
    delete_layer()
    storage, data = create_layer(size=(512, 512, 128, 1), offset=(3, 7, 11))
    cv = CloudVolume(storage.layer_path)
    assert len(cv.scales) == 1
    assert len(cv.available_mips) == 1
    delete_layer()

    cv.commit_info()

    tq = MockTaskQueue()

    try:
        tasks = create_downsampling_tasks(storage.layer_path,
                                          mip=0,
                                          num_mips=3,
                                          fill_missing=False)
        tq.insert_all(tasks)
    except EmptyVolumeException:
        pass

    tasks = create_downsampling_tasks(storage.layer_path,
                                      mip=0,
                                      num_mips=3,
                                      fill_missing=True)
    tq.insert_all(tasks)

    cv.refresh_info()

    assert len(cv.available_mips) == 4
    assert np.array_equal(cv.mip_volume_size(0), [512, 512, 128])
    assert np.array_equal(cv.mip_volume_size(1), [256, 256, 128])
    assert np.array_equal(cv.mip_volume_size(2), [128, 128, 128])
    assert np.array_equal(cv.mip_volume_size(3), [64, 64, 128])

    assert np.all(cv.mip_voxel_offset(3) == (0, 0, 11))

    cv.mip = 0
    cv.fill_missing = True
    assert np.count_nonzero(cv[3:67, 7:71, 11:75]) == 0
Exemplo n.º 6
0
def test_downsample_no_offset_2x2x2():
    delete_layer()
    cf, data = create_layer(size=(512,512,512,1), offset=(0,0,0))
    cv = CloudVolume(cf.cloudpath)
    assert len(cv.scales) == 1
    assert len(cv.available_mips) == 1

    cv.commit_info()

    tq = MockTaskQueue()
    tasks = create_downsampling_tasks(
        cf.cloudpath, mip=0, num_mips=3, 
        compress=None, factor=(2,2,2)
    )
    tq.insert_all(tasks)

    cv.refresh_info()

    assert len(cv.available_mips) == 4
    assert np.array_equal(cv.mip_volume_size(0), [ 512, 512, 512 ])
    assert np.array_equal(cv.mip_volume_size(1), [ 256, 256, 256 ])
    assert np.array_equal(cv.mip_volume_size(2), [ 128, 128, 128 ])
    assert np.array_equal(cv.mip_volume_size(3), [  64,  64,  64 ])
    
    slice64 = np.s_[0:64, 0:64, 0:64]

    cv.mip = 0
    assert np.all(cv[slice64] == data[slice64])

    data_ds1, = tinybrain.downsample_with_averaging(data, factor=[2, 2, 2, 1])
    cv.mip = 1
    assert np.all(cv[slice64] == data_ds1[slice64])

    data_ds2, = tinybrain.downsample_with_averaging(data, factor=[4, 4, 4, 1])
    cv.mip = 2
    assert np.all(cv[slice64] == data_ds2[slice64])

    data_ds3, = tinybrain.downsample_with_averaging(data, factor=[8, 8, 8, 1])
    cv.mip = 3
    assert np.all(cv[slice64] == data_ds3[slice64])
Exemplo n.º 7
0
def test_downsample_with_offset():
    delete_layer()
    storage, data = create_layer(size=(512, 512, 128, 1), offset=(3, 7, 11))
    cv = CloudVolume(storage.layer_path)
    assert len(cv.scales) == 1
    assert len(cv.available_mips) == 1

    cv.commit_info()

    tq = MockTaskQueue()
    tasks = create_downsampling_tasks(storage.layer_path, mip=0, num_mips=3)
    tq.insert_all(tasks)

    cv.refresh_info()

    assert len(cv.available_mips) == 4
    assert np.array_equal(cv.mip_volume_size(0), [512, 512, 128])
    assert np.array_equal(cv.mip_volume_size(1), [256, 256, 128])
    assert np.array_equal(cv.mip_volume_size(2), [128, 128, 128])
    assert np.array_equal(cv.mip_volume_size(3), [64, 64, 128])

    assert np.all(cv.mip_voxel_offset(3) == (0, 0, 11))

    cv.mip = 0
    assert np.all(cv[3:67, 7:71, 11:75] == data[0:64, 0:64, 0:64])

    data_ds1, = tinybrain.downsample_with_averaging(data, factor=[2, 2, 1, 1])
    cv.mip = 1
    assert np.all(cv[1:33, 3:35, 11:75] == data_ds1[0:32, 0:32, 0:64])

    data_ds2, = tinybrain.downsample_with_averaging(data, factor=[4, 4, 1, 1])
    cv.mip = 2
    assert np.all(cv[0:16, 1:17, 11:75] == data_ds2[0:16, 0:16, 0:64])

    data_ds3, = tinybrain.downsample_with_averaging(data, factor=[8, 8, 1, 1])
    cv.mip = 3
    assert np.all(cv[0:8, 0:8, 11:75] == data_ds3[0:8, 0:8, 0:64])
Exemplo n.º 8
0
def test_contrast_normalization_task():
    directory = '/tmp/removeme/contrast_normalization/'
    src_path = 'file://' + directory
    dest_path = src_path[:-1] + '2'

    delete_layer(src_path)
    delete_layer(dest_path)

    cf, imgd = create_layer(
        size=(300,300,129,1), offset=(0,0,0), 
        layer_type="image", layer_name='contrast_normalization'
    )
    tq = MockTaskQueue()
    tasks = tc.create_luminance_levels_tasks( 
        layer_path=src_path,
        coverage_factor=0.01, 
        shape=None, 
        offset=(0,0,0), 
        mip=0
    )
    tq.insert_all(tasks)

    tasks = tc.create_contrast_normalization_tasks( 
        src_path=src_path, 
        dest_path=dest_path, 
        levels_path=None,
        shape=None, 
        mip=0, 
        clip_fraction=0.01, 
        fill_missing=False, 
        translate=(0,0,0),
        minval=None, 
        maxval=None, 
        bounds=None,
        bounds_mip=0,
    )
    tq.insert_all(tasks)