Exemplo n.º 1
0
def euler_labor_leisure_func(w, r, e, n_guess, b_s, b_splus1, BQ, factor, T_H, chi_n, params, theta, tau_bq, lambdas):
    """
    This function is usually looped through over J, so it does one ability group at a time.
    Inputs:
        w = wage rate (scalar)
        r = rental rate (scalar)
        e = ability levels (Sx1 array)
        n_guess = labor distribution (Sx1 array)
        b_s = wealth holdings at the start of a period (Sx1 array)
        b_splus1 = wealth holdings for the next period (Sx1 array)
        BQ = aggregate bequests for a certain ability (scalar)
        factor = scaling factor to convert to dollars (scalar)
        T_H = lump sum tax (scalar)
        chi_n = chi^n_s (Sx1 array)
        params = parameter list (list)
        theta = replacement rate for a certain ability (scalar)
        tau_bq = bequest tax rate (scalar)
        lambdas = ability weight (scalar)
    Output:
        euler = Value of labor leisure euler error (Sx1 array)
    """
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = (
        params
    )
    tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H, None, "SS", False, params, theta, tau_bq)
    cons = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1)
    income = (r * b_s + w * e * n_guess) * factor
    deriv = (
        1
        - tau_payroll
        - tax.tau_income(r, b_s, w, e, n_guess, factor, params)
        - tax.tau_income_deriv(r, b_s, w, e, n_guess, factor, params) * income
    )
    euler = marg_ut_cons(cons, params) * w * deriv * e - marg_ut_labor(n_guess, chi_n, params)
    return euler
Exemplo n.º 2
0
def euler_labor_leisure_func(w, r, e, n_guess, b_s, b_splus1, BQ, factor, T_H,
                             chi_n, params, theta, tau_bq, lambdas):
    '''
    This function is usually looped through over J, so it does one ability group at a time.
    Inputs:
        w = wage rate (scalar)
        r = rental rate (scalar)
        e = ability levels (Sx1 array)
        n_guess = labor distribution (Sx1 array)
        b_s = wealth holdings at the start of a period (Sx1 array)
        b_splus1 = wealth holdings for the next period (Sx1 array)
        BQ = aggregate bequests for a certain ability (scalar)
        factor = scaling factor to convert to dollars (scalar)
        T_H = lump sum tax (scalar)
        chi_n = chi^n_s (Sx1 array)
        params = parameter list (list)
        theta = replacement rate for a certain ability (scalar)
        tau_bq = bequest tax rate (scalar)
        lambdas = ability weight (scalar)
    Output:
        euler = Value of labor leisure euler error (Sx1 array)
    '''
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \
        a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H,
                           None, 'SS', False, params, theta, tau_bq)
    cons = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1)
    income = (r * b_s + w * e * n_guess) * factor
    deriv = 1 - tau_payroll - tax.tau_income(
        r, b_s, w, e, n_guess, factor, params) - tax.tau_income_deriv(
            r, b_s, w, e, n_guess, factor, params) * income
    euler = marg_ut_cons(cons, params) * w * deriv * e - \
        marg_ut_labor(n_guess, chi_n, params)
    return euler
Exemplo n.º 3
0
def euler_savings_func(w, r, e, n_guess, b_s, b_splus1, b_splus2, BQ, factor,
                       T_H, chi_b, params, theta, tau_bq, rho, lambdas):
    '''
    This function is usually looped through over J, so it does one ability group at a time.
    Inputs:
        w = wage rate (scalar)
        r = rental rate (scalar)
        e = ability levels (Sx1 array)
        n_guess = labor distribution (Sx1 array)
        b_s = wealth holdings at the start of a period (Sx1 array)
        b_splus1 = wealth holdings for the next period (Sx1 array)
        b_splus2 = wealth holdings for 2 periods ahead (Sx1 array)
        BQ = aggregate bequests for a certain ability (scalar)
        factor = scaling factor to convert to dollars (scalar)
        T_H = lump sum tax (scalar)
        chi_b = chi^b_j for a certain ability (scalar)
        params = parameter list (list)
        theta = replacement rate for a certain ability (scalar)
        tau_bq = bequest tax rate (scalar)
        rho = mortality rate (Sx1 array)
        lambdas = ability weight (scalar)
    Output:
        euler = Value of savings euler error (Sx1 array)
    '''
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \
        a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    # In order to not have 2 savings euler equations (one that solves the first S-1 equations, and one that solves the last one),
    # we combine them.  In order to do this, we have to compute a consumption term in period t+1, which requires us to have a shifted
    # e and n matrix.  We append a zero on the end of both of these so they will be the right size.  We could append any value to them,
    # since in the euler equation, the coefficient on the marginal utility of
    # consumption for this term will be zero (since rho is one).
    e_extended = np.array(list(e) + [0])
    n_extended = np.array(list(n_guess) + [0])
    tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H,
                           None, 'SS', False, params, theta, tau_bq)
    tax2 = tax.total_taxes(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ,
                           lambdas, factor, T_H, None, 'SS', True, params,
                           theta, tau_bq)
    cons1 = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params,
                     tax1)
    cons2 = get_cons(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ,
                     lambdas, b_splus2, params, tax2)
    income = (r * b_splus1 + w * e_extended[1:] * n_extended[1:]) * factor
    deriv = (1 + r *
             (1 - tax.tau_income(r, b_splus1, w, e_extended[1:],
                                 n_extended[1:], factor, params) -
              tax.tau_income_deriv(r, b_splus1, w, e_extended[1:],
                                   n_extended[1:], factor, params) * income) -
             tax.tau_w_prime(b_splus1, params) * b_splus1 -
             tax.tau_wealth(b_splus1, params))
    savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1**(-sigma)
    # Again, not who in this equation, the (1-rho) term will zero out in the last period, so the last entry of cons2 can be complete
    # gibberish (which it is).  It just has to exist so cons2 is the right
    # size to match all other arrays in the equation.
    euler = marg_ut_cons(cons1,
                         params) - beta * (1 - rho) * deriv * marg_ut_cons(
                             cons2, params) * np.exp(-sigma * g_y) - savings_ut
    return euler
Exemplo n.º 4
0
def SS_TPI_firstdoughnutring(guesses, winit, rinit, BQinit, T_H_init,
                             initial_b, factor_ss, j, parameters, theta,
                             tau_bq):
    '''
    Solves the first entries of the upper triangle of the twist doughnut.  This is
    separate from the main TPI function because the the values of b and n are scalars,
    so it is easier to just have a separate function for these cases.
    Inputs:
        guesses = guess for b and n (2x1 list)
        winit = initial wage rate (scalar)
        rinit = initial rental rate (scalar)
        BQinit = initial aggregate bequest (scalar)
        T_H_init = initial lump sum tax (scalar)
        initial_b = initial distribution of capital (SxJ array)
        factor_ss = steady state scaling factor (scalar)
        j = which ability type is being solved for (scalar)
        parameters = list of parameters (list)
        theta = replacement rates (Jx1 array)
        tau_bq = bequest tax rates (Jx1 array)
    Output:
        euler errors (2x1 list)
    '''
    b2 = float(guesses[0])
    n1 = float(guesses[1])
    b1 = float(initial_b[-2, j])
    # Euler 1 equations
    tax1 = tax.total_taxes(rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[j],
                           factor_ss, T_H_init, j, 'TPI_scalar', False,
                           parameters, theta, tau_bq)
    cons1 = household.get_cons(rinit, b1, winit, e[-1, j], n1, BQinit,
                               lambdas[j], b2, parameters, tax1)
    bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[-1, j] * b2**(-sigma)
    error1 = household.marg_ut_cons(cons1, parameters) - bequest_ut
    # Euler 2 equations
    income2 = (rinit * b1 + winit * e[-1, j] * n1) * factor_ss
    deriv2 = 1 - tau_payroll - tax.tau_income(
        rinit, b1, winit, e[-1, j],
        n1, factor_ss, parameters) - tax.tau_income_deriv(
            rinit, b1, winit, e[-1, j], n1, factor_ss, parameters) * income2
    error2 = household.marg_ut_cons(cons1, parameters) * winit * \
        e[-1, j] * deriv2 - household.marg_ut_labor(n1, chi_n[-1], parameters)
    if n1 <= 0 or n1 >= 1:
        error2 += 1e12
    if b2 <= 0:
        error1 += 1e12
    if cons1 <= 0:
        error1 += 1e12
    return [error1] + [error2]
Exemplo n.º 5
0
def SS_TPI_firstdoughnutring(guesses, winit, rinit, BQinit, T_H_init, initial_b, factor_ss, j, parameters, theta, tau_bq):
    '''
    Solves the first entries of the upper triangle of the twist doughnut.  This is
    separate from the main TPI function because the the values of b and n are scalars,
    so it is easier to just have a separate function for these cases.
    Inputs:
        guesses = guess for b and n (2x1 list)
        winit = initial wage rate (scalar)
        rinit = initial rental rate (scalar)
        BQinit = initial aggregate bequest (scalar)
        T_H_init = initial lump sum tax (scalar)
        initial_b = initial distribution of capital (SxJ array)
        factor_ss = steady state scaling factor (scalar)
        j = which ability type is being solved for (scalar)
        parameters = list of parameters (list)
        theta = replacement rates (Jx1 array)
        tau_bq = bequest tax rates (Jx1 array)
    Output:
        euler errors (2x1 list)
    '''
    b2 = float(guesses[0])
    n1 = float(guesses[1])
    b1 = float(initial_b[-2, j])
    # Euler 1 equations
    tax1 = tax.total_taxes(rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[
                           j], factor_ss, T_H_init, j, 'TPI_scalar', False, parameters, theta, tau_bq)
    cons1 = household.get_cons(
        rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[j], b2, parameters, tax1)
    bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[-1, j] * b2 ** (-sigma)
    error1 = household.marg_ut_cons(cons1, parameters) - bequest_ut
    # Euler 2 equations
    income2 = (rinit * b1 + winit * e[-1, j] * n1) * factor_ss
    deriv2 = 1 - tau_payroll - tax.tau_income(rinit, b1, winit, e[
        -1, j], n1, factor_ss, parameters) - tax.tau_income_deriv(
        rinit, b1, winit, e[-1, j], n1, factor_ss, parameters) * income2
    error2 = household.marg_ut_cons(cons1, parameters) * winit * \
        e[-1, j] * deriv2 - household.marg_ut_labor(n1, chi_n[-1], parameters)
    if n1 <= 0 or n1 >= 1:
        error2 += 1e12
    if b2 <= 0:
        error1 += 1e12
    if cons1 <= 0:
        error1 += 1e12
    return [error1] + [error2]
Exemplo n.º 6
0
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j,
                            s, t, params, theta, tau_bq, rho, lambdas, e,
                            initial_b, chi_b, chi_n):
    '''
    Parameters:
        guesses = distribution of capital and labor (various length list)
        winit   = wage rate ((T+S)x1 array)
        rinit   = rental rate ((T+S)x1 array)
        BQinit = aggregate bequests ((T+S)x1 array)
        T_H_init = lump sum tax over time ((T+S)x1 array)
        factor = scaling factor (scalar)
        j = which ability type is being solved for (scalar)
        s = which upper triangle loop is being solved for (scalar)
        t = which diagonal is being solved for (scalar)
        params = list of parameters (list)
        theta = replacement rates (Jx1 array)
        tau_bq = bequest tax rate (Jx1 array)
        rho = mortalit rate (Sx1 array)
        lambdas = ability weights (Jx1 array)
        e = ability type (SxJ array)
        initial_b = capital stock distribution in period 0 (SxJ array)
        chi_b = chi^b_j (Jx1 array)
        chi_n = chi^n_s (Sx1 array)
    Output:
        Value of Euler error (various length list)
    '''

    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \
        a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    length = len(guesses) / 2
    b_guess = np.array(guesses[:length])
    n_guess = np.array(guesses[length:])

    if length == S:
        b_s = np.array([0] + list(b_guess[:-1]))
    else:
        b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1]))
    b_splus1 = b_guess
    b_splus2 = np.array(list(b_guess[1:]) + [0])
    w_s = winit[t:t + length]
    w_splus1 = winit[t + 1:t + length + 1]
    r_s = rinit[t:t + length]
    r_splus1 = rinit[t + 1:t + length + 1]
    n_s = n_guess
    n_extended = np.array(list(n_guess[1:]) + [0])
    e_s = e[-length:, j]
    e_extended = np.array(list(e[-length + 1:, j]) + [0])
    BQ_s = BQinit[t:t + length]
    BQ_splus1 = BQinit[t + 1:t + length + 1]
    T_H_s = T_H_init[t:t + length]
    T_H_splus1 = T_H_init[t + 1:t + length + 1]
    # Savings euler equations
    tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], factor,
                            T_H_s, j, 'TPI', False, params, theta, tau_bq)
    tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended,
                                 n_extended, BQ_splus1, lambdas[j], factor,
                                 T_H_splus1, j, 'TPI', True, params, theta,
                                 tau_bq)
    cons_s = household.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j],
                                b_splus1, params, tax_s)
    cons_splus1 = household.get_cons(r_splus1, b_splus1, w_splus1, e_extended,
                                     n_extended, BQ_splus1, lambdas[j],
                                     b_splus2, params, tax_splus1)
    income_splus1 = (r_splus1 * b_splus1 +
                     w_splus1 * e_extended * n_extended) * factor
    savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \
        chi_b[-(length):, j] * b_splus1 ** (-sigma)
    deriv_savings = 1 + r_splus1 * (
        1 - tax.tau_income(r_splus1, b_splus1, w_splus1, e_extended,
                           n_extended, factor, params) -
        tax.tau_income_deriv(r_splus1, b_splus1, w_splus1, e_extended,
                             n_extended, factor, params) * income_splus1
    ) - tax.tau_w_prime(b_splus1, params) * b_splus1 - tax.tau_wealth(
        b_splus1, params)
    error1 = household.marg_ut_cons(
        cons_s, params) - beta * (1 - rho[-(length):]) * np.exp(
            -sigma * g_y) * deriv_savings * household.marg_ut_cons(
                cons_splus1, params) - savings_ut
    # Labor leisure euler equations
    income_s = (r_s * b_s + w_s * e_s * n_s) * factor
    deriv_laborleisure = 1 - tau_payroll - tax.tau_income(
        r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv(
            r_s, b_s, w_s, e_s, n_s, factor, params) * income_s
    error2 = household.marg_ut_cons(cons_s, params) * w_s * e[
        -(length):, j] * deriv_laborleisure - household.marg_ut_labor(
            n_s, chi_n[-length:], params)
    # Check and punish constraint violations
    mask1 = n_guess < 0
    error2[mask1] += 1e12
    mask2 = n_guess > ltilde
    error2[mask2] += 1e12
    mask3 = cons_s < 0
    error2[mask3] += 1e12
    mask4 = b_guess <= 0
    error2[mask4] += 1e12
    mask5 = cons_splus1 < 0
    error2[mask5] += 1e12
    return list(error1.flatten()) + list(error2.flatten())
Exemplo n.º 7
0
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j, s, t, params, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n):
    '''
    Parameters:
        guesses = distribution of capital and labor (various length list)
        winit   = wage rate ((T+S)x1 array)
        rinit   = rental rate ((T+S)x1 array)
        BQinit = aggregate bequests ((T+S)x1 array)
        T_H_init = lump sum tax over time ((T+S)x1 array)
        factor = scaling factor (scalar)
        j = which ability type is being solved for (scalar)
        s = which upper triangle loop is being solved for (scalar)
        t = which diagonal is being solved for (scalar)
        params = list of parameters (list)
        theta = replacement rates (Jx1 array)
        tau_bq = bequest tax rate (Jx1 array)
        rho = mortalit rate (Sx1 array)
        lambdas = ability weights (Jx1 array)
        e = ability type (SxJ array)
        initial_b = capital stock distribution in period 0 (SxJ array)
        chi_b = chi^b_j (Jx1 array)
        chi_n = chi^n_s (Sx1 array)
    Output:
        Value of Euler error (various length list)
    '''

    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \
        a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    length = len(guesses) / 2
    b_guess = np.array(guesses[:length])
    n_guess = np.array(guesses[length:])

    if length == S:
        b_s = np.array([0] + list(b_guess[:-1]))
    else:
        b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1]))
    b_splus1 = b_guess
    b_splus2 = np.array(list(b_guess[1:]) + [0])
    w_s = winit[t:t + length]
    w_splus1 = winit[t + 1:t + length + 1]
    r_s = rinit[t:t + length]
    r_splus1 = rinit[t + 1:t + length + 1]
    n_s = n_guess
    n_extended = np.array(list(n_guess[1:]) + [0])
    e_s = e[-length:, j]
    e_extended = np.array(list(e[-length + 1:, j]) + [0])
    BQ_s = BQinit[t:t + length]
    BQ_splus1 = BQinit[t + 1:t + length + 1]
    T_H_s = T_H_init[t:t + length]
    T_H_splus1 = T_H_init[t + 1:t + length + 1]
    # Savings euler equations
    tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[
                            j], factor, T_H_s, j, 'TPI', False, params, theta, tau_bq)
    tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[
                                 j], factor, T_H_splus1, j, 'TPI', True, params, theta, tau_bq)
    cons_s = household.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[
                                j], b_splus1, params, tax_s)
    cons_splus1 = household.get_cons(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[
                                     j], b_splus2, params, tax_splus1)
    income_splus1 = (r_splus1 * b_splus1 + w_splus1 *
                     e_extended * n_extended) * factor
    savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \
        chi_b[-(length):, j] * b_splus1 ** (-sigma)
    deriv_savings = 1 + r_splus1 * (1 - tax.tau_income(
        r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) - tax.tau_income_deriv(
        r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) * income_splus1) - tax.tau_w_prime(
        b_splus1, params) * b_splus1 - tax.tau_wealth(b_splus1, params)
    error1 = household.marg_ut_cons(cons_s, params) - beta * (1 - rho[-(length):]) * np.exp(-sigma * g_y) * deriv_savings * household.marg_ut_cons(
        cons_splus1, params) - savings_ut
    # Labor leisure euler equations
    income_s = (r_s * b_s + w_s * e_s * n_s) * factor
    deriv_laborleisure = 1 - tau_payroll - tax.tau_income(r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv(
        r_s, b_s, w_s, e_s, n_s, factor, params) * income_s
    error2 = household.marg_ut_cons(cons_s, params) * w_s * e[-(
        length):, j] * deriv_laborleisure - household.marg_ut_labor(n_s, chi_n[-length:], params)
    # Check and punish constraint violations
    mask1 = n_guess < 0
    error2[mask1] += 1e12
    mask2 = n_guess > ltilde
    error2[mask2] += 1e12
    mask3 = cons_s < 0
    error2[mask3] += 1e12
    mask4 = b_guess <= 0
    error2[mask4] += 1e12
    mask5 = cons_splus1 < 0
    error2[mask5] += 1e12
    return list(error1.flatten()) + list(error2.flatten())
Exemplo n.º 8
0
def euler_savings_func(
    w, r, e, n_guess, b_s, b_splus1, b_splus2, BQ, factor, T_H, chi_b, params, theta, tau_bq, rho, lambdas
):
    """
    This function is usually looped through over J, so it does one ability group at a time.
    Inputs:
        w = wage rate (scalar)
        r = rental rate (scalar)
        e = ability levels (Sx1 array)
        n_guess = labor distribution (Sx1 array)
        b_s = wealth holdings at the start of a period (Sx1 array)
        b_splus1 = wealth holdings for the next period (Sx1 array)
        b_splus2 = wealth holdings for 2 periods ahead (Sx1 array)
        BQ = aggregate bequests for a certain ability (scalar)
        factor = scaling factor to convert to dollars (scalar)
        T_H = lump sum tax (scalar)
        chi_b = chi^b_j for a certain ability (scalar)
        params = parameter list (list)
        theta = replacement rate for a certain ability (scalar)
        tau_bq = bequest tax rate (scalar)
        rho = mortality rate (Sx1 array)
        lambdas = ability weight (scalar)
    Output:
        euler = Value of savings euler error (Sx1 array)
    """
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = (
        params
    )
    # In order to not have 2 savings euler equations (one that solves the first S-1 equations, and one that solves the last one),
    # we combine them.  In order to do this, we have to compute a consumption term in period t+1, which requires us to have a shifted
    # e and n matrix.  We append a zero on the end of both of these so they will be the right size.  We could append any value to them,
    # since in the euler equation, the coefficient on the marginal utility of
    # consumption for this term will be zero (since rho is one).
    e_extended = np.array(list(e) + [0])
    n_extended = np.array(list(n_guess) + [0])
    tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H, None, "SS", False, params, theta, tau_bq)
    tax2 = tax.total_taxes(
        r,
        b_splus1,
        w,
        e_extended[1:],
        n_extended[1:],
        BQ,
        lambdas,
        factor,
        T_H,
        None,
        "SS",
        True,
        params,
        theta,
        tau_bq,
    )
    cons1 = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1)
    cons2 = get_cons(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, b_splus2, params, tax2)
    income = (r * b_splus1 + w * e_extended[1:] * n_extended[1:]) * factor
    deriv = (
        1
        + r
        * (
            1
            - tax.tau_income(r, b_splus1, w, e_extended[1:], n_extended[1:], factor, params)
            - tax.tau_income_deriv(r, b_splus1, w, e_extended[1:], n_extended[1:], factor, params) * income
        )
        - tax.tau_w_prime(b_splus1, params) * b_splus1
        - tax.tau_wealth(b_splus1, params)
    )
    savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1 ** (-sigma)
    # Again, not who in this equation, the (1-rho) term will zero out in the last period, so the last entry of cons2 can be complete
    # gibberish (which it is).  It just has to exist so cons2 is the right
    # size to match all other arrays in the equation.
    euler = (
        marg_ut_cons(cons1, params)
        - beta * (1 - rho) * deriv * marg_ut_cons(cons2, params) * np.exp(-sigma * g_y)
        - savings_ut
    )
    return euler