Exemplo n.º 1
0
def run_nth_year_gdp_elast_model(year_n,
                                 start_year,
                                 use_puf_not_cps,
                                 use_full_sample,
                                 user_mods,
                                 gdp_elasticity,
                                 return_dict=True):
    """
    The run_nth_year_gdp_elast_model function assumes user_mods is a dictionary
      returned by the Calculator.read_json_param_objects() function.
    Setting use_puf_not_cps=True implies use puf.csv input file;
      otherwise, use cps.csv input file.
    Setting use_full_sample=False implies use sub-sample of input file;
      otherwsie, use the complete sample.
    """
    # pylint: disable=too-many-arguments,too-many-locals

    # calculate gdp_effect
    fyear = check_years_return_first_year(year_n, start_year, use_puf_not_cps)
    if (start_year + year_n) > fyear:
        # create calc1 and calc2 calculated for year_n - 1
        (calc1, calc2, _) = calculate((year_n - 1),
                                      start_year,
                                      use_puf_not_cps,
                                      use_full_sample,
                                      user_mods,
                                      behavior_allowed=False)
        # compute GDP effect given specified gdp_elasticity
        gdp_effect = proportional_change_in_gdp((start_year + year_n), calc1,
                                                calc2, gdp_elasticity)
    else:
        gdp_effect = 0.0

    # return gdp_effect results
    if return_dict:
        gdp_df = pd.DataFrame(data=[gdp_effect], columns=['col0'])
        gdp_elast_names_n = [
            x + '_' + str(year_n) for x in GDP_ELAST_ROW_NAMES
        ]
        gdp_elast_total = create_dict_table(gdp_df,
                                            row_names=gdp_elast_names_n,
                                            num_decimals=5)
        gdp_elast_total = dict((k, v[0]) for k, v in gdp_elast_total.items())
        return gdp_elast_total
    else:
        return gdp_effect
Exemplo n.º 2
0
def run_nth_year_tax_calc_model(year_n,
                                start_year,
                                use_puf_not_cps,
                                use_full_sample,
                                user_mods,
                                return_dict=True):
    """
    The run_nth_year_tax_calc_model function assumes user_mods is a dictionary
      returned by the Calculator.read_json_param_objects() function.
    Setting use_puf_not_cps=True implies use puf.csv input file;
      otherwise, use cps.csv input file.
    Setting use_full_sample=False implies use sub-sample of input file;
      otherwsie, use the complete sample.
    """
    # pylint: disable=too-many-arguments,too-many-locals

    start_time = time.time()

    # create calc1 and calc2 calculated for year_n and mask
    check_years_return_first_year(year_n, start_year, use_puf_not_cps)
    (calc1, calc2, mask) = calculate(year_n,
                                     start_year,
                                     use_puf_not_cps,
                                     use_full_sample,
                                     user_mods,
                                     behavior_allowed=True)

    # extract raw results from calc1 and calc2
    rawres1 = results(calc1.records)
    rawres2 = results(calc2.records)

    # seed random number generator with a seed value based on user_mods
    seed = random_seed(user_mods)
    print('seed={}'.format(seed))
    np.random.seed(seed)  # pylint: disable=no-member

    # construct TaxBrain summary results from raw results
    summ = summary(rawres1, rawres2, mask)

    def append_year(pdf):
        """
        append_year embedded function revises all column names in pdf
        """
        pdf.columns = [str(col) + '_{}'.format(year_n) for col in pdf.columns]
        return pdf

    # optionally return non-JSON-like results
    if not return_dict:
        res = dict()
        for tbl in summ:
            res[tbl] = append_year(summ[tbl])
        elapsed_time = time.time() - start_time
        print('elapsed time for this run: {:.1f}'.format(elapsed_time))
        return res

    # optionally construct JSON-like results dictionaries for year n
    dec_row_names_n = [x + '_' + str(year_n) for x in DECILE_ROW_NAMES]
    bin_row_names_n = [x + '_' + str(year_n) for x in WEBBIN_ROW_NAMES]
    agg_row_names_n = [x + '_' + str(year_n) for x in AGG_ROW_NAMES]
    dist_column_types = [float] * len(DIST_TABLE_LABELS)
    diff_column_types = [float] * len(DIFF_TABLE_LABELS)
    info = dict()
    for tbl in summ:
        info[tbl] = {'row_names': [], 'col_types': []}
        if 'dec' in tbl:
            info[tbl]['row_names'] = dec_row_names_n
        elif 'bin' in tbl:
            info[tbl]['row_names'] = bin_row_names_n
        else:
            info[tbl]['row_names'] = agg_row_names_n
        if 'dist' in tbl:
            info[tbl]['col_types'] = dist_column_types
        elif 'diff' in tbl:
            info[tbl]['col_types'] = diff_column_types
    res = dict()
    for tbl in summ:
        if 'aggr' in tbl:
            res_table = create_dict_table(summ[tbl],
                                          row_names=info[tbl]['row_names'])
            res[tbl] = dict((k, v[0]) for k, v in res_table.items())
        else:
            res[tbl] = create_dict_table(summ[tbl],
                                         row_names=info[tbl]['row_names'],
                                         column_types=info[tbl]['col_types'])

    elapsed_time = time.time() - start_time
    print('elapsed time for this run: {:.1f}'.format(elapsed_time))

    return res
Exemplo n.º 3
0
def run_nth_year_taxcalc_model(year_n,
                               start_year,
                               use_puf_not_cps,
                               use_full_sample,
                               user_mods,
                               return_dict=True):
    """
    The run_nth_year_taxcalc_model function assumes user_mods is a dictionary
      returned by the Calculator.read_json_param_objects() function.
    Setting use_puf_not_cps=True implies use puf.csv input file;
      otherwise, use cps.csv input file.
    Setting use_full_sample=False implies use sub-sample of input file;
      otherwsie, use the complete sample.
    """
    # pylint: disable=too-many-arguments,too-many-locals,too-many-branches

    start_time = time.time()

    # create calc1 and calc2 calculated for year_n
    check_years_return_first_year(year_n, start_year, use_puf_not_cps)
    calc1, calc2 = calculate(year_n,
                             start_year,
                             use_puf_not_cps,
                             use_full_sample,
                             user_mods,
                             behavior_allowed=True)

    # extract unfuzzed raw results from calc1 and calc2
    dv1 = calc1.distribution_table_dataframe()
    dv2 = calc2.distribution_table_dataframe()

    # delete calc1 and calc2 now that raw results have been extracted
    del calc1
    del calc2

    # construct TaxBrain summary results from raw results
    sres = dict()
    fuzzing = use_puf_not_cps
    if fuzzing:
        # seed random number generator with a seed value based on user_mods
        # (reform-specific seed is used to choose whose results are fuzzed)
        seed = random_seed(user_mods)
        print('fuzzing_seed={}'.format(seed))
        np.random.seed(seed)  # pylint: disable=no-member
        # make bool array marking which filing units are affected by the reform
        reform_affected = np.logical_not(  # pylint: disable=no-member
            np.isclose(dv1['combined'], dv2['combined'], atol=0.01, rtol=0.0))
        agg1, agg2 = fuzzed(dv1, dv2, reform_affected, 'aggr')
        sres = summary_aggregate(sres, agg1, agg2)
        del agg1
        del agg2
        dv1b, dv2b = fuzzed(dv1, dv2, reform_affected, 'xbin')
        sres = summary_dist_xbin(sres, dv1b, dv2b)
        sres = summary_diff_xbin(sres, dv1b, dv2b)
        del dv1b
        del dv2b
        dv1d, dv2d = fuzzed(dv1, dv2, reform_affected, 'xdec')
        sres = summary_dist_xdec(sres, dv1d, dv2d)
        sres = summary_diff_xdec(sres, dv1d, dv2d)
        del dv1d
        del dv2d
        del reform_affected
    else:
        sres = summary_aggregate(sres, dv1, dv2)
        sres = summary_dist_xbin(sres, dv1, dv2)
        sres = summary_diff_xbin(sres, dv1, dv2)
        sres = summary_dist_xdec(sres, dv1, dv2)
        sres = summary_diff_xdec(sres, dv1, dv2)

    # nested function used below
    def append_year(pdf):
        """
        append_year embedded function revises all column names in pdf
        """
        pdf.columns = [str(col) + '_{}'.format(year_n) for col in pdf.columns]
        return pdf

    # optionally return non-JSON-like results
    if not return_dict:
        res = dict()
        for tbl in sres:
            res[tbl] = append_year(sres[tbl])
        elapsed_time = time.time() - start_time
        print('elapsed time for this run: {:.1f}'.format(elapsed_time))
        return res

    # optionally construct JSON-like results dictionaries for year n
    dec_rownames = list(sres['diff_comb_xdec'].index.values)
    dec_row_names_n = [x + '_' + str(year_n) for x in dec_rownames]
    bin_rownames = list(sres['diff_comb_xbin'].index.values)
    bin_row_names_n = [x + '_' + str(year_n) for x in bin_rownames]
    agg_row_names_n = [x + '_' + str(year_n) for x in AGG_ROW_NAMES]
    dist_column_types = [float] * len(DIST_TABLE_LABELS)
    diff_column_types = [float] * len(DIFF_TABLE_LABELS)
    info = dict()
    for tbl in sres:
        info[tbl] = {'row_names': [], 'col_types': []}
        if 'dec' in tbl:
            info[tbl]['row_names'] = dec_row_names_n
        elif 'bin' in tbl:
            info[tbl]['row_names'] = bin_row_names_n
        else:
            info[tbl]['row_names'] = agg_row_names_n
        if 'dist' in tbl:
            info[tbl]['col_types'] = dist_column_types
        elif 'diff' in tbl:
            info[tbl]['col_types'] = diff_column_types
    res = dict()
    for tbl in sres:
        if 'aggr' in tbl:
            res_table = create_dict_table(sres[tbl],
                                          row_names=info[tbl]['row_names'])
            res[tbl] = dict((k, v[0]) for k, v in res_table.items())
        else:
            res[tbl] = create_dict_table(sres[tbl],
                                         row_names=info[tbl]['row_names'],
                                         column_types=info[tbl]['col_types'])

    elapsed_time = time.time() - start_time
    print('elapsed time for this run: {:.1f}'.format(elapsed_time))

    return res