def main(): # tb(Traceback.colour) function should be removed import tb tb.colour() # user code ultraTrainSet()
def main(): # tb(Traceback.colour) function should be removed import tb tb.colour() # user code ResnetRunner().train_test()
def main(): # tb(Traceback.colour) function should be removed import tb tb.colour() # user code a = np.ones((2, 3)) b = np.array(np.arange(0, 6).reshape((2, 3))) - 1 print(accuracy(a, b))
print('max={}, mean={:.3f}, shape={}'.format( np.array(sample).max(), np.array(sample).mean(), sample.size)) sample = sample.convert('L') print('max={}, mean={:.3f}, shape={}'.format( np.array(sample).max(), np.array(sample).mean(), sample.size)) # sample = T.ToTensor()(sample) sample = torch.Tensor(np.array(sample)) print('max={}, mean={:.3f}, shape={}'.format( np.array(sample).max(), np.array(sample).mean(), sample.shape)) # target = torch.Tensor(target) def main(): # user code data_analysis() # data_debug() if __name__ == '__main__': # pdb: python debuger import pdb # tb(Traceback.colour) function should be removed import tb tb.colour() main()
def main(): # tb(Traceback.colour) function should be removed import tb tb.colour()
def main(): import tb tb.colour() sinaAnalyser().run()