def test_load_data(): variables = [ordinal('education', ['high school', 'college', 'PhD']), ratio('age', drange=[0,99])] file_path = './datasets/mini_test.csv' ds = load_data(file_path, variables, 'participant_id') assert ds.dfile == file_path assert ds.variables == variables
def test_make_ordinal(): o = ordinal('education', ['high school', 'college', 'Master\'s', 'PhD']) assert o.name == 'education' assert o.categories == OrderedDict([ ('high school', 1), ('college', 2), ('Master\'s', 3), ('PhD', 4) ]) assert o.drange == [1,4]
def test_load_data(): variables = [ ordinal('education', ['high school', 'college', 'PhD']), ratio('age', drange=[0, 99]) ] file_path = './datasets/mini_test.csv' ds = load_data(file_path, variables, 'participant_id') assert ds.dfile == file_path assert ds.variables == variables categories = ['high school', 'college', 'PhD'] # variables = [ordinal('education', categories)] edu = ordinal('education', ['high school', 'college', 'PhD']) age = ratio('age', drange=[0, 99]) variables = [edu, age] file_path = './datasets/mini_test.csv' ds = load_data(file_path, variables, 'participant_id') def test_index_in_dataset(): for v in variables: assert (ds[v.name].equals(ds.data[v.name])) # def test_select_equals(): # for v in variables: # all_unique = ds.data[v.name].unique()