Exemplo n.º 1
0
 def test_time_teleportation(self):
     states = [z0, z1, xp, xm, yp, ym, rand_ket(2)]
     for psi in states:
         fidelity0000, fidelity = simulateTeleportation(
             psi,
             continuousTeleportationSimulation,
             continuousXXBraidingCorrectionSimulation,
             continuousZBraidingCorrectionSimulation,
             continuousDecodingSimulation)
         assert are_close(fidelity0000, 1.)
         assert fidelity < fidelity0000
Exemplo n.º 2
0
 def test_unitary_teleportation(self):
     states = [z0, z1, xp, xm, yp, ym, rand_ket(2)]
     for psi in states:
         fidelity0000, fidelity = simulateTeleportation(
             psi,
             circuitTeleportationSimulation,
             circuitXXBraidingCorrectionSimulation,
             circuitZBraidingCorrectionSimulation,
             circuitDecodingSimulation)
         assert are_close(fidelity0000, 1.)
         assert are_close(fidelity, 1.)
Exemplo n.º 3
0
 def test_noisy_time_teleportation_rand(self):
     N = 8
     gamma = 0.05
     c_ops = [np.sqrt(gamma)*Sz(N, i) for i in range(N)]
     psi = rand_ket(2)
     fidelity0000, fidelity = simulateTeleportation(
         psi,
         continuousTeleportationSimulation,
         continuousXXBraidingCorrectionSimulation,
         continuousZBraidingCorrectionSimulation,
         continuousDecodingSimulation,
         c_ops=c_ops)
     assert fidelity0000 > fidelity
Exemplo n.º 4
0
    'xp': xp,
    'xm': xm,
    'yp': yp,
    'ym': ym,
    'rnd': rand_ket(2)
}

N = 8
nb = args.res
gmax = args.gamma
gs = np.linspace(0., gmax, nb)

psi = inp[args.psi]

results = np.zeros((3, nb))
results[0, :] = gs

for i, gamma in enumerate(tqdm(gs)):
    c_ops = [np.sqrt(gamma) * Sz(N, j) for j in range(N)]
    f0000, fall = simulateTeleportation(
        psi,
        continuousTeleportationSimulation,
        continuousXXBraidingCorrectionSimulation,
        continuousZBraidingCorrectionSimulation,
        continuousDecodingSimulation,
        c_ops=c_ops)
    results[1, i] = f0000
    results[2, i] = fall

np.save(args.output, np.array(results))