Exemplo n.º 1
0
    def step(i, probs, counts, images):
        # Sample image patch
        H = sample_homography(shape, **config['homographies'])
        H_inv = invert_homography(H)
        warped = H_transform(image, H, interpolation='BILINEAR')
        count = H_transform(tf.expand_dims(tf.ones(tf.shape(image)[:3]), -1),
                            H_inv,
                            interpolation='NEAREST')[..., 0]

        # Predict detection probabilities
        warped_shape = tf.to_int32(
            tf.to_float(shape) * config['homographies']['patch_ratio'])
        input_warped = tf.image.resize_images(warped, warped_shape)
        prob = net(input_warped)['prob']
        prob = tf.image.resize_images(tf.expand_dims(prob, axis=-1),
                                      shape)[..., 0]
        prob_proj = H_transform(tf.expand_dims(prob, -1),
                                H_inv,
                                interpolation='BILINEAR')[..., 0]

        probs = tf.concat([probs, tf.expand_dims(prob_proj, -1)], axis=-1)
        counts = tf.concat([counts, tf.expand_dims(count, -1)], axis=-1)
        images = tf.concat([images, tf.expand_dims(warped, -1)], axis=-1)
        return i + 1, probs, counts, images
Exemplo n.º 2
0
def compute_valid_mask(image_shape, homography, erosion_radius=0):
    """
    Compute a boolean mask of the valid pixels resulting from an homography applied to
    an image of a given shape. Pixels that are False correspond to bordering artifacts.
    A margin can be discarded using erosion.

    Arguments:
        input_shape: Tensor of rank 2 representing the image shape, i.e. `[H, W]`.
        homography: Tensor of shape (B, 8) or (8,), where B is the batch size.
        erosion_radius: radius of the margin to be discarded.

    Returns: a Tensor of type `tf.int32` and shape (H, W).
    """
    mask = H_transform(tf.ones(image_shape), homography, interpolation='NEAREST')
    if erosion_radius > 0:
        kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (erosion_radius*2,)*2)
        mask = tf.nn.erosion2d(
                mask[tf.newaxis, ..., tf.newaxis],
                tf.to_float(tf.constant(kernel)[..., tf.newaxis]),
                [1, 1, 1, 1], [1, 1, 1, 1], 'SAME')[0, ..., 0] + 1.
    return tf.to_int32(mask)
Exemplo n.º 3
0
    def step(i, probs, counts, images):
        #Sample image patch
        H = sample_homography(shape, **config['homographies'])
        H_inv = invert_homography(H)

        #############################################
        H_ = shape[0]
        W = shape[1]
        row_c = tf.random_uniform(shape=[],
                                  minval=0,
                                  maxval=tf.cast(H_, tf.float32),
                                  dtype=tf.float32)
        col_c = tf.random_uniform(shape=[],
                                  minval=0,
                                  maxval=tf.cast(W, tf.float32),
                                  dtype=tf.float32)
        lambda_ = tf.constant(0.000006)
        #############################################
        #apply the homography
        warped = H_transform(image, H, interpolation='BILINEAR')
        #############################################
        #apply the radial distortion
        warped = distort(warped, lambda_, (row_c, col_c))

        #count = warp_points_dist(tf.expand_dims(tf.ones(tf.shape(image)[:3]),-1), lambda_, (row_c,col_c), inverse=True)
        count = undistort(tf.expand_dims(tf.ones(tf.shape(image)[:3]), -1),
                          lambda_, (row_c, col_c))
        #count = tf.round(count)
        count = H_transform(count, H_inv, interpolation='NEAREST')

        mask = H_transform(tf.expand_dims(tf.ones(tf.shape(image)[:3]), -1),
                           H,
                           interpolation='NEAREST')

        mask = distort(mask, lambda_, (row_c, col_c))

        #############################################

        # Ignore the detections too close to the border to avoid artifacts
        if config['valid_border_margin']:
            kernel = cv.getStructuringElement(
                cv.MORPH_ELLIPSE, (config['valid_border_margin'] * 2, ) * 2)
            with tf.device('/cpu:0'):
                count = tf.nn.erosion2d(
                    count, tf.to_float(tf.constant(kernel)[..., tf.newaxis]),
                    [1, 1, 1, 1], [1, 1, 1, 1], 'SAME')[..., 0] + 1.
                mask = tf.nn.erosion2d(
                    mask, tf.to_float(tf.constant(kernel)[..., tf.newaxis]),
                    [1, 1, 1, 1], [1, 1, 1, 1], 'SAME')[..., 0] + 1.

# Predict detection probabilities
        prob = net(warped)['prob']
        prob = prob * mask

        prob_proj = undistort(tf.expand_dims(prob, -1), lambda_,
                              (row_c, col_c))
        prob_proj = H_transform(prob_proj, H_inv,
                                interpolation='BILINEAR')[..., 0]

        prob_proj = prob_proj * count
        probs = tf.concat([probs, tf.expand_dims(prob_proj, -1)], axis=-1)
        counts = tf.concat([counts, tf.expand_dims(count, -1)], axis=-1)
        images = tf.concat([images, tf.expand_dims(warped, -1)], axis=-1)
        return i + 1, probs, counts, images