Exemplo n.º 1
0
def MobileNet(
        input_shape=None,  # pylint: disable=invalid-name
        alpha=1.0,
        depth_multiplier=1,
        dropout=1e-3,
        include_top=True,
        weights='imagenet',
        input_tensor=None,
        pooling=None,
        classes=1000):
    """Instantiates the MobileNet architecture.

  Note that only TensorFlow is supported for now,
  therefore it only works with the data format
  `image_data_format='channels_last'` in your Keras config
  at `~/.keras/keras.json`.

  To load a MobileNet model via `load_model`, import the custom
  objects `relu6` and `DepthwiseConv2D` and pass them to the
  `custom_objects` parameter.
  E.g.
  model = load_model('mobilenet.h5', custom_objects={
                     'relu6': mobilenet.relu6,
                     'DepthwiseConv2D': mobilenet.DepthwiseConv2D})

  Arguments:
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or (3, 224, 224) (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 32.
          E.g. `(200, 200, 3)` would be one valid value.
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      depth_multiplier: depth multiplier for depthwise convolution
          (also called the resolution multiplier)
      dropout: dropout rate
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: `None` (random initialization) or
          `imagenet` (ImageNet weights)
      input_tensor: optional Keras tensor (i.e. output of
          `layers.Input()`)
          to use as image input for the model.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model
              will be the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a
              2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """

    if K.backend() != 'tensorflow':
        raise RuntimeError('Only TensorFlow backend is currently supported, '
                           'as other backends do not support '
                           'depthwise convolution.')

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as ImageNet with `include_top` '
                         'as true, `classes` should be 1000')

    # Determine proper input shape.
    if input_shape is None:
        default_size = 224
    else:
        if K.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]
        if rows == cols and rows in [128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=default_size,
                                      min_size=32,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)
    if K.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if depth_multiplier != 1:
            raise ValueError('If imagenet weights are being loaded, '
                             'depth multiplier must be 1')

        if alpha not in [0.25, 0.50, 0.75, 1.0]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of'
                             '`0.25`, `0.50`, `0.75` or `1.0` only.')

        if rows != cols or rows not in [128, 160, 192, 224]:
            raise ValueError('If imagenet weights are being loaded, '
                             'input must have a static square shape (one of '
                             '(128,128), (160,160), (192,192), or (224, 224)).'
                             ' Input shape provided = %s' % (input_shape, ))

    if K.image_data_format() != 'channels_last':
        warnings.warn('The MobileNet family of models is only available '
                      'for the input data format "channels_last" '
                      '(width, height, channels). '
                      'However your settings specify the default '
                      'data format "channels_first" (channels, width, height).'
                      ' You should set `image_data_format="channels_last"` '
                      'in your Keras config located at ~/.keras/keras.json. '
                      'The model being returned right now will expect inputs '
                      'to follow the "channels_last" data format.')
        K.set_image_data_format('channels_last')
        old_data_format = 'channels_first'
    else:
        old_data_format = None

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = _conv_block(img_input, 32, alpha, strides=(2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

    x = _depthwise_conv_block(x,
                              128,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=2)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

    x = _depthwise_conv_block(x,
                              256,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=4)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

    x = _depthwise_conv_block(x,
                              512,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=6)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

    x = _depthwise_conv_block(x,
                              1024,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=12)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

    if include_top:
        if K.image_data_format() == 'channels_first':
            shape = (int(1024 * alpha), 1, 1)
        else:
            shape = (1, 1, int(1024 * alpha))

        x = GlobalAveragePooling2D()(x)
        x = Reshape(shape, name='reshape_1')(x)
        x = Dropout(dropout, name='dropout')(x)
        x = Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x)
        x = Activation('softmax', name='act_softmax')(x)
        x = Reshape((classes, ), name='reshape_2')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))

    # load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            raise ValueError('Weights for "channels_last" format '
                             'are not available.')
        if alpha == 1.0:
            alpha_text = '1_0'
        elif alpha == 0.75:
            alpha_text = '7_5'
        elif alpha == 0.50:
            alpha_text = '5_0'
        else:
            alpha_text = '2_5'

        if include_top:
            model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
            weigh_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(model_name,
                                    weigh_path,
                                    cache_subdir='models')
        else:
            model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
            weigh_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(model_name,
                                    weigh_path,
                                    cache_subdir='models')
        model.load_weights(weights_path)

    if old_data_format:
        K.set_image_data_format(old_data_format)
    return model
Exemplo n.º 2
0
def InceptionResNetV2(include_top=True,
                      weights='imagenet',
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000):
    """Instantiates the Inception-ResNet v2 architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that when using TensorFlow, for best performance you should
    set `"image_data_format": "channels_last"` in your Keras config
    at `~/.keras/keras.json`.
    The model and the weights are compatible with TensorFlow, Theano and
    CNTK backends. The data format convention used by the model is
    the one specified in your Keras config file.
    Note that the default input image size for this model is 299x299, instead
    of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
    function is different (i.e., do not use `imagenet_utils.preprocess_input()`
    with this model. Use `preprocess_input()` defined in this module instead).
    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or `'imagenet'` (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is `False` (otherwise the input shape
            has to be `(299, 299, 3)` (with `'channels_last'` data format)
            or `(3, 299, 299)` (with `'channels_first'` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the last convolutional layer.
            - `'avg'` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `'max'` means that global max pooling will be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`, and
            if no `weights` argument is specified.
    # Returns
        A Keras `Model` instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=139,
                                      data_format=K.image_data_format(),
                                      require_flatten=False,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block: 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
    x = conv2d_bn(x, 32, 3, padding='valid')
    x = conv2d_bn(x, 64, 3)
    x = MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, padding='valid')
    x = MaxPooling2D(3, strides=2)(x)

    # Mixed 5b (Inception-A block): 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
    x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)

    # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type='block35',
                                   block_idx=block_idx)

    # Mixed 6a (Reduction-A block): 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)

    # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)

    # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type='block8',
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=10)

    # Final convolution block: 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name='conv_7b')

    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model
    model = Model(inputs, x, name='inception_resnet_v2')

    # Load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
        if include_top:
            weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
            weights_path = get_file(
                weights_filename,
                BASE_WEIGHT_URL + weights_filename,
                cache_subdir='models',
                file_hash='e693bd0210a403b3192acc6073ad2e96')
        else:
            weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
            weights_path = get_file(
                weights_filename,
                BASE_WEIGHT_URL + weights_filename,
                cache_subdir='models',
                file_hash='d19885ff4a710c122648d3b5c3b684e4')
        model.load_weights(weights_path)

    return model
Exemplo n.º 3
0
def MobileNet(input_shape=None,  # pylint: disable=invalid-name
              alpha=1.0,
              depth_multiplier=1,
              dropout=1e-3,
              include_top=True,
              weights='imagenet',
              input_tensor=None,
              pooling=None,
              classes=1000):
  """Instantiates the MobileNet architecture.

  Note that only TensorFlow is supported for now,
  therefore it only works with the data format
  `image_data_format='channels_last'` in your Keras config
  at `~/.keras/keras.json`.

  To load a MobileNet model via `load_model`, import the custom
  objects `relu6` and `DepthwiseConv2D` and pass them to the
  `custom_objects` parameter.
  E.g.
  model = load_model('mobilenet.h5', custom_objects={
                     'relu6': mobilenet.relu6,
                     'DepthwiseConv2D': mobilenet.DepthwiseConv2D})

  Arguments:
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or (3, 224, 224) (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 32.
          E.g. `(200, 200, 3)` would be one valid value.
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      depth_multiplier: depth multiplier for depthwise convolution
          (also called the resolution multiplier)
      dropout: dropout rate
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: `None` (random initialization) or
          `imagenet` (ImageNet weights)
      input_tensor: optional Keras tensor (i.e. output of
          `layers.Input()`)
          to use as image input for the model.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model
              will be the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a
              2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """

  if K.backend() != 'tensorflow':
    raise RuntimeError('Only TensorFlow backend is currently supported, '
                       'as other backends do not support '
                       'depthwise convolution.')

  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as ImageNet with `include_top` '
                     'as true, `classes` should be 1000')

  # Determine proper input shape.
  if input_shape is None:
    default_size = 224
  else:
    if K.image_data_format() == 'channels_first':
      rows = input_shape[1]
      cols = input_shape[2]
    else:
      rows = input_shape[0]
      cols = input_shape[1]
    if rows == cols and rows in [128, 160, 192, 224]:
      default_size = rows
    else:
      default_size = 224
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=K.image_data_format(),
      require_flatten=include_top,
      weights=weights)
  if K.image_data_format() == 'channels_last':
    row_axis, col_axis = (0, 1)
  else:
    row_axis, col_axis = (1, 2)
  rows = input_shape[row_axis]
  cols = input_shape[col_axis]

  if weights == 'imagenet':
    if depth_multiplier != 1:
      raise ValueError('If imagenet weights are being loaded, '
                       'depth multiplier must be 1')

    if alpha not in [0.25, 0.50, 0.75, 1.0]:
      raise ValueError('If imagenet weights are being loaded, '
                       'alpha can be one of'
                       '`0.25`, `0.50`, `0.75` or `1.0` only.')

    if rows != cols or rows not in [128, 160, 192, 224]:
      raise ValueError('If imagenet weights are being loaded, '
                       'input must have a static square shape (one of '
                       '(128,128), (160,160), (192,192), or (224, 224)).'
                       ' Input shape provided = %s' % (input_shape,))

  if K.image_data_format() != 'channels_last':
    warnings.warn('The MobileNet family of models is only available '
                  'for the input data format "channels_last" '
                  '(width, height, channels). '
                  'However your settings specify the default '
                  'data format "channels_first" (channels, width, height).'
                  ' You should set `image_data_format="channels_last"` '
                  'in your Keras config located at ~/.keras/keras.json. '
                  'The model being returned right now will expect inputs '
                  'to follow the "channels_last" data format.')
    K.set_image_data_format('channels_last')
    old_data_format = 'channels_first'
  else:
    old_data_format = None

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  x = _conv_block(img_input, 32, alpha, strides=(2, 2))
  x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

  x = _depthwise_conv_block(
      x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2)
  x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

  x = _depthwise_conv_block(
      x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4)
  x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

  x = _depthwise_conv_block(
      x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

  x = _depthwise_conv_block(
      x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12)
  x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

  if include_top:
    if K.image_data_format() == 'channels_first':
      shape = (int(1024 * alpha), 1, 1)
    else:
      shape = (1, 1, int(1024 * alpha))

    x = GlobalAveragePooling2D()(x)
    x = Reshape(shape, name='reshape_1')(x)
    x = Dropout(dropout, name='dropout')(x)
    x = Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x)
    x = Activation('softmax', name='act_softmax')(x)
    x = Reshape((classes,), name='reshape_2')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))

  # load weights
  if weights == 'imagenet':
    if K.image_data_format() == 'channels_first':
      raise ValueError('Weights for "channels_last" format '
                       'are not available.')
    if alpha == 1.0:
      alpha_text = '1_0'
    elif alpha == 0.75:
      alpha_text = '7_5'
    elif alpha == 0.50:
      alpha_text = '5_0'
    else:
      alpha_text = '2_5'

    if include_top:
      model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
      weigh_path = BASE_WEIGHT_PATH + model_name
      weights_path = get_file(model_name, weigh_path, cache_subdir='models')
    else:
      model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
      weigh_path = BASE_WEIGHT_PATH + model_name
      weights_path = get_file(model_name, weigh_path, cache_subdir='models')
    model.load_weights(weights_path)

  if old_data_format:
    K.set_image_data_format(old_data_format)
  return model
Exemplo n.º 4
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format="channels_last"` in your Keras config
    at ~/.keras/keras.json.

    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 244)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 197.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format=K.image_data_format(),
                                      include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = WEIGHTS_PATH
        else:
            weights_path = WEIGHTS_PATH_NO_TOP
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='avg_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1000')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')

            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
    return model
Exemplo n.º 5
0
def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
    """Instantiates the Inception v3 architecture.

    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format="channels_last"` in your Keras config
    at ~/.keras/keras.json.
    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.
    Note that the default input image size for this model is 299x299.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(299, 299, 3)` (with `channels_last` data format)
            or `(3, 299, 299)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=139,
        data_format=K.image_data_format(),
        include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = 3

    x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = conv2d_bn(x, 32, 3, 3, padding='valid')
    x = conv2d_bn(x, 64, 3, 3)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv2d_bn(x, 80, 1, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, 3, padding='valid')
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    # mixed 0, 1, 2: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed0')

    # mixed 1: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed1')

    # mixed 2: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed2')

    # mixed 3: 17 x 17 x 768
    branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(
        branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3')

    # mixed 4: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 128, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed4')

    # mixed 5, 6: 17 x 17 x 768
    for i in range(2):
        branch1x1 = conv2d_bn(x, 192, 1, 1)

        branch7x7 = conv2d_bn(x, 160, 1, 1)
        branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(5 + i))

    # mixed 7: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed7')

    # mixed 8: 8 x 8 x 1280
    branch3x3 = conv2d_bn(x, 192, 1, 1)
    branch3x3 = conv2d_bn(branch3x3, 320, 3, 3,
                          strides=(2, 2), padding='valid')

    branch7x7x3 = conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = conv2d_bn(
        branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8')

    # mixed 9: 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn(x, 320, 1, 1)

        branch3x3 = conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate(
            [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i))

        branch3x3dbl = conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate(
            [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(9 + i))
    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='inception_v3')

    # load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
        if include_top:
            weights_path = WEIGHTS_PATH
        else:
            weights_path = WEIGHTS_PATH_NO_TOP
        model.load_weights(weights_path)
    return model