Exemplo n.º 1
0
def main(argv):
  _ = argv

  if FLAGS.num_towers > 1:
    convnet.train_mnist_multitower(
        FLAGS.data_dir, num_epochs=200, num_towers=FLAGS.num_towers)
  else:
    convnet.train_mnist_single_machine(FLAGS.data_dir, num_epochs=200)
Exemplo n.º 2
0
 def testTrainMnistSingleMachine(self):
   with tf.Graph().as_default():
     # Ensure model training doesn't crash.
     #
     # Ideally, we should check that accuracy increases as the model converges,
     # but there are too few parameters for the model to effectively memorize
     # the training set the way an MLP can.
     convnet.train_mnist_single_machine(
         data_dir=None, num_epochs=1, use_fake_data=True, device="/cpu:0")
Exemplo n.º 3
0
 def testTrainMnistSingleMachine(self):
   with tf.Graph().as_default():
     # Ensure model training doesn't crash.
     #
     # Ideally, we should check that accuracy increases as the model converges,
     # but there are too few parameters for the model to effectively memorize
     # the training set the way an MLP can.
     convnet.train_mnist_single_machine(
         data_dir=None, num_epochs=1, use_fake_data=True, device="/cpu:0")
def main(unused_argv):
    convnet.train_mnist_single_machine(FLAGS.data_dir, num_epochs=200)
def main(unused_argv):
  convnet.train_mnist_single_machine(FLAGS.data_dir, num_epochs=200)
def main(argv):
    _ = argv
    convnet.train_mnist_single_machine(FLAGS.data_dir, num_epochs=200)
Exemplo n.º 7
0
def main(argv):
  _ = argv
  convnet.train_mnist_single_machine(FLAGS.data_dir, num_epochs=200)