Exemplo n.º 1
0
def conv_LSTM(state, scope):
    with tf.variable_scope(scope):
        state_shape = state.shape.as_list()

        channels = state_shape[-1]

        conv_LSTM_cell = rnn.ConvLSTMCell(
            conv_ndims=2,
            input_shape=state_shape[1:],    # exclude batch size
            output_channels=channels,
            kernel_shape=[1, 1],
        )

        # State will have the following shape:
        #   [timesteps, batch size, width, height, channels]
        #   timesteps = rollout size
        #   batch size = 1 (online learning)
        #   width = height = size_s = size_m
        #   channels = depends on preprocessing, number of features, etc...
        state = tf.expand_dims(state, 1)
        conv_LSTM_out, _ = tf.nn.dynamic_rnn(
            conv_LSTM_cell,
            state,
            time_major=True,
            dtype=state.dtype
        )

        return conv_LSTM_out
Exemplo n.º 2
0
 def __init__(self, config, initial_state):
     self.config = config
     with tf.variable_scope("trans") as scope:
         self.inputs = tf.placeholder(tf.float32, [
             self.config.trans_in_l, None, self.config.trans_seq_l,
             self.config.trans_in_w, self.config.trans_in_h
         ],
                                      name="trans_inputs")
         self.targets = tf.placeholder(tf.float32, [
             self.config.trans_in_l, None, self.config.trans_seq_l,
             self.config.trans_in_w, self.config.trans_in_h
         ],
                                       name="trans_target")
         self.initial_state_input = tf.placeholder(tf.float32, [
             None, self.config.trans_seq_l, self.config.trans_in_w,
             self.config.trans_in_h
         ])
         self.rnn = rnn.ConvLSTMCell(self.config.trans_conv_ndims, [
             self.config.trans_in_w, self.config.trans_in_h,
             self.config.trans_in_l
         ],
                                     self.config.trans_output_channel,
                                     self.config.trans_kernel_shape,
                                     name="trans_conv_lstm")
         self.trans_output, self.trans_output_state = tf.nn.dynamic_rnn(
             self.rnn,
             inputs=self.inputs,
             initial_state=self.initial_state_input)
Exemplo n.º 3
0
    def build(self, features):
        # Extract features while preserving the dimensions

        # Minimap convolutions
        m_conv = cnn_block(features["minimap"], scope="m")
        s_conv = cnn_block(features["screen"], scope="s")

        # Create the state representation by concatenating on the channel axis
        state_representation = tf.concat(
            [m_conv, s_conv,
             tf.transpose(features["info"], [0, 2, 3, 1])],
            axis=3,
            name="state_representation")

        state_shape = state_representation.shape.as_list()

        conv_LSTM_cell = rnn.ConvLSTMCell(
            conv_ndims=1,
            input_shape=[state_shape[1], state_shape[2]],
            output_channels=state_shape[3],
            kernel_shape=[1])

        conv_LSTM_out, state = tf.nn.dynamic_rnn(
            conv_LSTM_cell,
            state_representation,
            dtype=state_representation.dtype)

        fc = layers.fully_connected(
            layers.flatten(conv_LSTM_out),
            num_outputs=256,
            activation_fn=tf.nn.relu,
            scope='fully_conv_lstm_features',
        )

        spatial_action = tf.nn.softmax(
            layers.flatten(
                layers.conv2d(state_representation,
                              num_outputs=1,
                              kernel_size=1,
                              stride=1,
                              activation_fn=None,
                              scope='spatial_policy')))

        non_spatial_action = layers.fully_connected(
            fc,
            num_outputs=len(actions.FUNCTIONS),
            activation_fn=tf.nn.softmax,
            scope='non_spatial_policy')

        value = layers.fully_connected(fc,
                                       num_outputs=1,
                                       activation_fn=None,
                                       scope='value')

        return spatial_action, non_spatial_action, value
Exemplo n.º 4
0
    def __init__(self, state, size, step_size, filters, scope):
        state_shape = state.shape.as_list()
        lstm = rnn.ConvLSTMCell(
            conv_ndims=2,
            input_shape=state_shape[1:],  # exclude batch size
            output_channels=filters,
            kernel_shape=[3, 3]
        )

        c_size = [int(c) for c in lstm.state_size.c]
        h_size = [int(h) for h in lstm.state_size.h]

        c_init = np.zeros([1] + c_size, np.float32)
        h_init = np.zeros([1] + h_size, np.float32)
        self.state_init = [c_init, h_init]

        c_in = tf.placeholder(
            tf.float32,
            shape=[1] + c_size,
            name='c_in_{}'.format(scope)
        )

        h_in = tf.placeholder(
            tf.float32,
            shape=[1] + h_size,
            name='h_in_{}'.format(scope)
        )
        self.state_in = [c_in, h_in]

        state_in = rnn.LSTMStateTuple(c_in, h_in)

        # State will have the following shape:
        #   [timesteps, batch size, width, height, channels]
        #   timesteps = rollout size
        #   batch size = 1 (online learning)
        #   width = height = size_s = size_m
        #   channels = depends on preprocessing, number of features, etc...
        state = tf.expand_dims(state, 1)
        lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
            lstm,
            state,
            time_major=True,
            initial_state=state_in,
            sequence_length=step_size
        )
        lstm_outputs = tf.reshape(lstm_outputs, [-1, size, size, filters])

        lstm_c, lstm_h = lstm_state
        self.state_out = [lstm_c[:1, :], lstm_h[:1, :]]
        self.output = lstm_outputs
Exemplo n.º 5
0
def conv_lstm_2d(inputs,
                 state,
                 output_channels,
                 kernel_size=5,
                 name=None,
                 spatial_dims=None):
    """2D Convolutional LSTM."""
    input_shape = common.shape_list(inputs)
    batch_size, input_channels = input_shape[0], input_shape[-1]
    if spatial_dims is None:
        input_shape = input_shape[1:]
    else:
        input_shape = spatial_dims + [input_channels]

    cell = contrib_rnn.ConvLSTMCell(2,
                                    input_shape,
                                    output_channels,
                                    [kernel_size, kernel_size],
                                    name=name)
    if state is None:
        state = cell.zero_state(batch_size, tf.float32)
    outputs, new_state = cell(inputs, state)
    return outputs, new_state
Exemplo n.º 6
0
    def __init__(self, model, channel_num, batch_size, seq_len, learning_rate,
                 ws, wg, wt, phase, sum_dir):
        if phase == 'train' or phase == 'test':
            self.inputNoiseList = [tf.placeholder(tf.float32, [batch_size, 128, 128, channel_num])\
                for _ in range(seq_len)]
            self.inputCleanList = [tf.placeholder(tf.float32, [batch_size, 128, 128, 3])\
                for _ in range(seq_len)]
        else:
            self.inputNoiseList = [tf.placeholder(tf.float32, [batch_size, 416, 800, channel_num])\
                for _ in range(seq_len)]
            self.inputCleanList = [tf.placeholder(tf.float32, [batch_size, 416, 800, 3])\
                for _ in range(seq_len)]

        with arg_scope(
            [layers.conv2d],
                activation_fn=tf.nn.leaky_relu,
                #normalizer_fn=layers.batch_norm,
                normalizer_params={'scale': True},
                padding='SAME'):
            with tf.variable_scope("model") as scope:  #Full VAEGAN structure
                if phase == 'train' or phase == 'test':
                    inpH, inpW = 128, 128
                else:
                    inpH, inpW = 416, 800
                if model == 'RAE':
                    with tf.name_scope("initalize_RNN_cell"):
                        cell1 = rnn.ConvLSTMCell(2, [inpH, inpW, 32],
                                                 32, [3, 3],
                                                 name='rnn1')
                        cell2 = rnn.ConvLSTMCell(2, [inpH / 2, inpW / 2, 43],
                                                 43, [3, 3],
                                                 name='rnn2')
                        cell3 = rnn.ConvLSTMCell(2, [inpH / 4, inpW / 4, 57],
                                                 57, [3, 3],
                                                 name='rnn3')
                        cell4 = rnn.ConvLSTMCell(2, [inpH / 8, inpW / 8, 76],
                                                 76, [3, 3],
                                                 name='rnn4')
                        cell5 = rnn.ConvLSTMCell(2,
                                                 [inpH / 16, inpW / 16, 101],
                                                 101, [3, 3],
                                                 name='rnn5')
                        cell6 = rnn.ConvLSTMCell(2,
                                                 [inpH / 32, inpW / 32, 101],
                                                 101, [3, 3],
                                                 name='rnn6')

                    # Encoder
                    l1, l2, l3, l4, l5, out = encoderRNN(self.inputNoiseList, batch_size, cell1, cell2, cell3, \
                        cell4, cell5, cell6, (inpH, inpW), reuse_vars=False)
                elif model == "AE":
                    l1, l2, l3, l4, l5, out = encoder(self.inputNoiseList,
                                                      batch_size,
                                                      reuse_vars=False)
                Enc_params_num = len(tf.trainable_variables())

                # Decoder / Generator
                self.denoised_imgList = decoder(l1,
                                                l2,
                                                l3,
                                                l4,
                                                l5,
                                                out, (inpH, inpW),
                                                reuse_vars=False)
                Enc_n_Dec_params_num = len(tf.trainable_variables())

        self.params = tf.trainable_variables()
        self.Enc_params = self.params[:Enc_params_num]
        self.Dec_params = self.params[Enc_params_num:Enc_n_Dec_params_num]
        print(len(self.params))
        for var in self.params:
            print(var.name)

        self.Spatial_loss = self.__get_L1_loss(self.denoised_imgList,
                                               self.inputCleanList)
        Spatial_loss_sum = tf.summary.scalar('Spatial_loss', self.Spatial_loss)
        self.Gradient_loss = self.__get_grad_L1_loss(self.denoised_imgList,
                                                     self.inputCleanList)
        Gradient_loss_sum = tf.summary.scalar('Gradient_loss',
                                              self.Gradient_loss)
        if model == 'RAE':
            self.Temporal_loss = self.__get_tem_L1_loss(
                self.denoised_imgList, self.inputCleanList)
            Temporal_loss_sum = tf.summary.scalar('Temporal_loss',
                                                  self.Temporal_loss)
            # merge  summary for Tensorboard
            self.detached_loss_summary_merged = tf.summary.merge(
                [Spatial_loss_sum, Gradient_loss_sum, Temporal_loss_sum])
            # loss function
            total_loss = ws * self.Spatial_loss + wg * self.Gradient_loss + wt * self.Temporal_loss

        elif model == 'AE':
            self.detached_loss_summary_merged = tf.summary.merge(
                [Spatial_loss_sum, Gradient_loss_sum])
            # loss function
            total_loss = ws * self.Spatial_loss + wg * self.Gradient_loss

        # self.train     = layers.optimize_loss(total_loss, tf.train.get_or_create_global_step(\
        #     ), learning_rate=learning_rate, variables = self.params, optimizer='RMSProp', update_ops=[])

        self.train = tf.train.AdamOptimizer(learning_rate=learning_rate,
                                            beta1=0.9,
                                            beta2=0.99,
                                            epsilon=1e-08,
                                            name='Adam').minimize(
                                                total_loss,
                                                var_list=self.params)

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        self.sess = tf.Session(config=config)
        self.sess.run(tf.global_variables_initializer())
        #.replace('\\','/')
        self.train_writer = tf.summary.FileWriter(sum_dir, self.sess.graph)
Exemplo n.º 7
0
with graph.as_default():

    # placehoder
    encoder_inputs = tf.placeholder(
        tf.float32, [TIME_STEPS, None, GRID_SIZE, GRID_SIZE, CHANNEL])
    decoder_target_outputs = tf.placeholder(
        tf.float32, [TIME_STEPS, None, GRID_SIZE, GRID_SIZE, CHANNEL])
    _, batch_size, _, _, _ = tf.unstack(tf.shape(encoder_inputs))

    #------------------------------------Encoder------------------------------------------#
    #Convlstm instance
    encoder_cell_1 = rnn.ConvLSTMCell(
        conv_ndims=2,
        input_shape=[GRID_SIZE, GRID_SIZE, CHANNEL],
        output_channels=16,
        kernel_shape=[16, 16],
        use_bias=True,
        skip_connection=False,
        forget_bias=1.0,
        initializers=None,
        name='encode')

    encoder_cell_2 = rnn.ConvLSTMCell(
        conv_ndims=2,
        input_shape=[GRID_SIZE, GRID_SIZE, CHANNEL],
        output_channels=16,
        kernel_shape=[16, 16],
        use_bias=True,
        skip_connection=False,
        forget_bias=1.0,
        initializers=None,
        name='encoder')
Exemplo n.º 8
0
def get_model(input, is_training):
    # input: bx10x227x227
    with tf.variable_scope('spatial_encoder_1'):
        input = tf.expand_dims(input, axis=-1)
        print(input)
        encoded = tf.layers.conv3d(input,
                                   128,
                                   kernel_size=[1, 11, 11],
                                   strides=[1, 4, 4],
                                   padding='valid',
                                   name='conv1')
        encoded = tf.layers.batch_normalization(
            encoded, training=is_training)  # bx10x55x55x128
        encoded = tf.nn.tanh(encoded, name='tanh_1')

    with tf.variable_scope('spatial_encoder_2'):
        encoded = tf.layers.conv3d(encoded,
                                   64,
                                   kernel_size=[1, 5, 5],
                                   strides=[1, 2, 2],
                                   padding='valid',
                                   name='conv2')
        encoded = tf.layers.batch_normalization(
            encoded, training=is_training)  # bx10x26x26x64
        encoded = tf.nn.tanh(encoded, name='tanh_2')

    with tf.variable_scope('temporal_encoder_1'):
        lstm_cell = rnn.ConvLSTMCell(2,
                                     input_shape=[26, 26, 64],
                                     output_channels=64,
                                     kernel_shape=[3, 3])
        output, _ = tf.nn.dynamic_rnn(lstm_cell,
                                      encoded,
                                      initial_state=None,
                                      dtype='float32')

    with tf.variable_scope('temporal_encoder_2'):
        lstm_cell = rnn.ConvLSTMCell(2,
                                     input_shape=[26, 26, 64],
                                     output_channels=32,
                                     kernel_shape=[2, 2])
        output, _ = tf.nn.dynamic_rnn(lstm_cell,
                                      output,
                                      initial_state=None,
                                      dtype='float32')
        # print (output)

    with tf.variable_scope('temporal_decoder_1'):
        lstm_cell = rnn.ConvLSTMCell(2,
                                     input_shape=[26, 26, 32],
                                     output_channels=64,
                                     kernel_shape=[3, 3])
        output, _ = tf.nn.dynamic_rnn(lstm_cell,
                                      output,
                                      initial_state=None,
                                      dtype='float32')
        print(output)

    with tf.variable_scope('spatial_decoder_1'):
        decoded = tf.layers.conv3d_transpose(output,
                                             128,
                                             kernel_size=[1, 5, 5],
                                             padding='valid',
                                             strides=[1, 2, 2],
                                             name='deconv1')
        decoded = tf.layers.batch_normalization(decoded, training=is_training)
        decoded = tf.nn.tanh(decoded, name='tanh_3')
        #print(decoded)

    with tf.variable_scope('spatial_decoder_2'):
        decoded = tf.layers.conv3d_transpose(decoded,
                                             1,
                                             kernel_size=[1, 11, 11],
                                             padding='valid',
                                             strides=[1, 4, 4],
                                             name='deconv2')
        #print(decoded)

    decoded = tf.squeeze(decoded, axis=-1)
    print(decoded)
    return decoded