Exemplo n.º 1
0
def get_vgg_loss(x, y):
    from tensorflow.contrib.slim.nets import vgg as model_module
    combined_images = tf.concat([x, y], axis=0)
    input_img = (combined_images + 1.0) / 2.0
    VGG_MEANS = np.array([[[[0.485, 0.456, 0.406]]]]).astype('float32')
    VGG_MEANS = tf.constant(VGG_MEANS, shape=[1, 1, 1, 3])
    vgg_input = (input_img - VGG_MEANS) * 255.0
    bgr_input = tf.stack(
        [vgg_input[:, :, :, 2], vgg_input[:, :, :, 1], vgg_input[:, :, :, 0]],
        axis=-1)

    slim = tf.contrib.slim
    with slim.arg_scope(model_module.vgg_arg_scope()):
        _, end_points = model_module.vgg_19(bgr_input,
                                            num_classes=1000,
                                            spatial_squeeze=False,
                                            is_training=False)

    loss = 0
    for layer in ['vgg_19/conv3/conv3_1', 'vgg_19/conv5/conv5_1']:
        layer_shape = tf.shape(end_points[layer])
        x_vals = end_points[layer][:layer_shape[0] // 2]
        y_vals = end_points[layer][layer_shape[0] // 2:]
        loss += tf.reduce_mean(tf.pow(x_vals - y_vals, 2))

    return loss
Exemplo n.º 2
0
def VGG16(inputs, n_classes, freeze=False):
    trainable = not freeze
    
    inputs = tf.cast(inputs, tf.float32)
    inputs = (inputs-127.5) / 127.5 # rescale: 0~255 -> -1~+1
    
    with tf.variable_scope("vgg_16"):
        with slim.arg_scope(vgg.vgg_arg_scope()):
            net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1', trainable=trainable)
            net = slim.max_pool2d(net, [2, 2], scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2', trainable=trainable)
            net = slim.max_pool2d(net, [2, 2], scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3', trainable=trainable)
            net = slim.max_pool2d(net, [2, 2], scope='pool3')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4', trainable=trainable)
            net = slim.max_pool2d(net, [2, 2], scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5', trainable=trainable)
            net = slim.max_pool2d(net, [2, 2], scope='pool5')
    #Append fully connected layer
    net = slim.flatten(net)
    """
    net = slim.fully_connected(net, 256,
            weights_initializer=tf.contrib.layers.xavier_initializer(),
            weights_regularizer=slim.l2_regularizer(0.0005),
            scope='finetune/fc1')
    """
    net = slim.fully_connected(net, n_classes,
            activation_fn=None,
            weights_initializer=tf.contrib.layers.xavier_initializer(),
            weights_regularizer=slim.l2_regularizer(0.001), # strong regularization
            scope='finetune/classification')
    return net
Exemplo n.º 3
0
    def Setup(self):

        image_pre = vgg_preprocessing.preprocess_image(self.image,
                                                       self.image_size,
                                                       self.image_size,
                                                       is_training=False)
        self.image_4d = tf.expand_dims(image_pre, 0)

        # net forward
        with slim.arg_scope(vgg.vgg_arg_scope()):
            #     1000 classes instead of 1001.
            _, _ = vgg.vgg_16(self.image_4d,
                              num_classes=1000,
                              is_training=False)

        self.log("Model loading...")
        self.init_fn = slim.assign_from_checkpoint_fn(
            VGG16_CKPT, slim.get_model_variables('vgg_16'))

        # net output
        self.fc7 = tf.get_default_graph().get_tensor_by_name(
            "vgg_16/fc7/Relu:0")

        self.sess = tf.Session()

        # variables need to be initialized before any sess.run() calls
        self.init_fn(self.sess)

        self.log("Restored model")
Exemplo n.º 4
0
def graph(x, y, i, x_max, x_min, grad, vgg_y):
    eps = FLAGS.max_epsilon
    num_iter = FLAGS.num_iter
    alpha = eps / num_iter
    momentum = FLAGS.momentum

    one_hot_vgg = tf.one_hot(vgg_y, 1000)

    x_div = input_diversity(x)

    with slim.arg_scope(vgg.vgg_arg_scope()):
        logits, end_points = vgg.vgg_16(x_div,
                                        num_classes=1001,
                                        is_training=False)

    cross_entropy = tf.losses.softmax_cross_entropy(one_hot_vgg, logits)

    noise = tf.gradients(cross_entropy, x)[0]

    noise = noise / tf.reduce_mean(tf.abs(noise), [1, 2, 3], keep_dims=True)
    noise = momentum * grad + noise
    x = x + alpha * tf.sign(noise)
    x = tf.clip_by_value(x, x_min, x_max)
    i = tf.add(i, 1)
    return x, y, i, x_max, x_min, noise, vgg_y
Exemplo n.º 5
0
def vgg16(inputs, is_training):
    """định nghĩa CNN
    Args:
      inputs: 5-D tensor [batch_size, width, height, 3]
    Return:
      iou: 4-D tensor [batch_size, 7, 7, 5*nbox + nclass]
    """
    # khái báo scope để có thê group những biến liên quan cho việc visualize trên tensorboard.
    with tf.variable_scope("vgg_16"):
        with slim.arg_scope(vgg.vgg_arg_scope()):
            # hàm repeat có tác dụng lặp lại tầng conv2d n lần mà không phải định nghĩa phức tạp. thank for slim package
            net = slim.repeat(inputs, 2, slim.conv2d, 16, [3, 3], scope='conv1')
            net = slim.max_pool2d(net, [2, 2], scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 32, [3, 3], scope='conv2')
            net = slim.max_pool2d(net, [2, 2], scope='pool2')
            net = slim.repeat(net, 2, slim.conv2d, 64, [3, 3], scope='conv3')
            net = slim.max_pool2d(net, [2, 2], scope='pool3')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv4')
            net = slim.max_pool2d(net, [2, 2], scope='pool4')
            net = slim.repeat(net, 2, slim.conv2d, 256, [3, 3], scope='conv5')
            net = slim.max_pool2d(net, [2, 2], scope='pool5')
            
            # thay vì sử dụng 2 tầng fully connected tại đây, 
            # chúng ta sử dụng conv với kernel_size = (1,1) có tác dụng giống hệt tầng fully conntected
            net = slim.conv2d(net, 512, [1, 1], scope='fc6')   

            net = slim.conv2d(net, 13, [1, 1], activation_fn=None, scope='fc7')
    return net
Exemplo n.º 6
0
def _create_cnn_graph(img, is_training=True):
    with tf.variable_scope("vgg_16"):
        with slim.arg_scope(vgg.vgg_arg_scope()):
            net = slim.repeat(img, 2, slim.conv2d, 64, [3, 3],
                              scope="conv1")  # 创建多个拥有相同变量的指定层
            net = slim.max_pool2d(net, [2, 2], scope="pool1")
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope="conv2")
            net = slim.max_pool2d(net, [2, 2], scope="pool2")
            net = slim.repeat(net, 2, slim.conv2d, 256, [3, 3], scope="conv3")
            net = slim.max_pool2d(net, [2, 2], scope="pool3")
            net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope="conv4")
            net = slim.max_pool2d(net, [2, 2], scope="pool4")
            net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope="conv5")
            net = slim.max_pool2d(net, [2, 2], scope="pool5")
    net = slim.flatten(net)
    net = slim.fully_connected(net,
                               512,
                               biases_regularizer=slim.l2_regularizer(0.0005),
                               scope="fc1")
    net = slim.fully_connected(net,
                               2,
                               activation_fn=None,
                               biases_regularizer=slim.l2_regularizer(0.0005),
                               scope="fc2")
    return net
Exemplo n.º 7
0
def eval(x, num_classes=110):
    with slim.arg_scope(inception.inception_v1_arg_scope()):
        logits_inc_v1, end_points_inc_v1 = inception.inception_v1(
            x, num_classes=num_classes, is_training=False, scope='InceptionV1')
    pred1 = tf.argmax(end_points_inc_v1['Predictions'], 1)
    # rescale pixle range from [-1, 1] to [0, 255] for resnet_v1 and vgg's input
    image = (((x + 1.0) * 0.5) * 255.0)
    processed_imgs_res_v1_50 = preprocess_for_model(image, 'resnet_v1_50')
    with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        logits_res_v1_50, end_points_res_v1_50 = resnet_v1.resnet_v1_50(
            processed_imgs_res_v1_50,
            num_classes=num_classes,
            is_training=False,
            scope='resnet_v1_50')
    end_points_res_v1_50['logits'] = tf.squeeze(
        end_points_res_v1_50['resnet_v1_50/logits'], [1, 2])
    end_points_res_v1_50['probs'] = tf.nn.softmax(
        end_points_res_v1_50['logits'])
    pred2 = tf.argmax(end_points_res_v1_50['probs'], 1)
    # image = (((x + 1.0) * 0.5) * 255.0)#.astype(np.uint8)
    processed_imgs_vgg_16 = preprocess_for_model(image, 'vgg_16')
    with slim.arg_scope(vgg.vgg_arg_scope()):
        logits_vgg_16, end_points_vgg_16 = vgg.vgg_16(processed_imgs_vgg_16,
                                                      num_classes=num_classes,
                                                      is_training=False,
                                                      scope='vgg_16')
    end_points_vgg_16['logits'] = end_points_vgg_16['vgg_16/fc8']
    end_points_vgg_16['probs'] = tf.nn.softmax(end_points_vgg_16['logits'])
    pred3 = tf.argmax(end_points_vgg_16['probs'], 1)
    return [pred1, pred2, pred3]
Exemplo n.º 8
0
Arquivo: test2.py Projeto: BurceTu/ml
def infer(inputs, is_training=True):
	inputs = tf.cast(inputs, tf.float32)
	inputs = ((inputs / 255.0)-0.5)*2
	#Use Pretrained Base Model
	with tf.variable_scope("vgg_16"):
		with slim.arg_scope(vgg.vgg_arg_scope()):
			net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
			net = slim.max_pool2d(net, [2, 2], scope='pool1')
			net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
			net = slim.max_pool2d(net, [2, 2], scope='pool2')
			net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
			net = slim.max_pool2d(net, [2, 2], scope='pool3')
			net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
			net = slim.max_pool2d(net, [2, 2], scope='pool4')
			net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
			net = slim.max_pool2d(net, [2, 2], scope='pool5')
	#Append fully connected layer
	net = slim.flatten(net)
	net = slim.fully_connected(net, 512,
			weights_initializer=tf.contrib.layers.xavier_initializer(),
			weights_regularizer=slim.l2_regularizer(0.0005),
			scope='finetune/fc1')
	net = slim.fully_connected(net, 2,
			activation_fn=None,
			weights_initializer=tf.contrib.layers.xavier_initializer(),
			weights_regularizer=slim.l2_regularizer(0.0005),
			scope='finetune/fc2')
	return net
Exemplo n.º 9
0
    def forward(self, input_tensor, is_training):
        dropout_value = 0.5

        input_tensor = tf.image.resize_images(input_tensor, [224, 224])

        print("Is training:", is_training)

        with slim.arg_scope(vgg.vgg_arg_scope()):
            h, end_points = vgg.vgg_19(input_tensor, is_training=is_training)

        print(list(end_points.keys()))

        h = tf.pad(end_points['vgg_19/pool4'], [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT")
        print(h)

        h = L.convolution2d_transpose(h, 128, [5, 5], [2, 2], activation_fn=None)
        h = tf.nn.relu(h)
        h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        h = L.convolution2d_transpose(h, 64, [5, 5], [2, 2], activation_fn=None)
        h = tf.nn.relu(h)
        h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        h = L.convolution2d_transpose(h, 32, [5, 5], [2, 2], activation_fn=None)
        h = tf.nn.relu(h)
        h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        h = L.convolution2d_transpose(h, 32, [5, 5], [2, 2], activation_fn=None)
        h = tf.nn.relu(h)
        h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        h = L.convolution2d(h, len(self.classes) + 1, [1, 1], [1, 1], activation_fn=None)

        return h
Exemplo n.º 10
0
def vgg16(inputs, is_training):
    """định nghĩa CNN
    Args:
      inputs: 5-D tensor [batch_size, width, height, 3]
    Return:
      iou: 4-D tensor [batch_size, 7, 7, 5*nbox + nclass]
    """
    #
    with tf.variable_scope("vgg_16"):
        with slim.arg_scope(vgg.vgg_arg_scope()):
            #
            net = slim.repeat(inputs,
                              2,
                              slim.conv2d,
                              16, [3, 3],
                              scope='conv1')
            net = slim.max_pool2d(net, [2, 2], scope='pool1')

            # TODO
            net = slim.repeat(net, 2, slim.conv2d, 32, [3, 3], scope='conv2')
            net = slim.max_pool2d(net, [2, 2], scope='pool2')
            net = slim.repeat(net, 2, slim.conv2d, 64, [3, 3], scope='conv3')
            net = slim.max_pool2d(net, [2, 2], scope='pool3')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv4')
            net = slim.max_pool2d(net, [2, 2], scope='pool4')
            net = slim.repeat(net, 2, slim.conv2d, 256, [3, 3], scope='conv5')
            net = slim.max_pool2d(net, [2, 2], scope='pool5')

            net = slim.conv2d(net, 512, [1, 1], scope='fc6')

            net = slim.conv2d(net, 13, [1, 1], activation_fn=None, scope='fc7')
    return net
Exemplo n.º 11
0
def non_target_graph(x, y, i, x_max, x_min, grad):

    eps = 2.0 * max_epsilon / 255.0
    alpha = eps / num_iter
    num_classes = 110

    with slim.arg_scope(inception.inception_v1_arg_scope()):
        logits_inc_v1, end_points_inc_v1 = inception.inception_v1(
            x, num_classes=num_classes, is_training=False, scope='InceptionV1')

    # rescale pixle range from [-1, 1] to [0, 255] for resnet_v1 and vgg's input
    image = (((x + 1.0) * 0.5) * 255.0)
    processed_imgs_res_v1_50 = preprocess_for_model(image, 'resnet_v1_50')
    with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        logits_res_v1_50, end_points_res_v1_50 = resnet_v1.resnet_v1_50(
            processed_imgs_res_v1_50,
            num_classes=num_classes,
            is_training=False,
            scope='resnet_v1_50')

    end_points_res_v1_50['logits'] = tf.squeeze(
        end_points_res_v1_50['resnet_v1_50/logits'], [1, 2])
    end_points_res_v1_50['probs'] = tf.nn.softmax(
        end_points_res_v1_50['logits'])

    # image = (((x + 1.0) * 0.5) * 255.0)#.astype(np.uint8)
    processed_imgs_vgg_16 = preprocess_for_model(image, 'vgg_16')
    with slim.arg_scope(vgg.vgg_arg_scope()):
        logits_vgg_16, end_points_vgg_16 = vgg.vgg_16(processed_imgs_vgg_16,
                                                      num_classes=num_classes,
                                                      is_training=False,
                                                      scope='vgg_16')

        end_points_vgg_16['logits'] = end_points_vgg_16['vgg_16/fc8']
        end_points_vgg_16['probs'] = tf.nn.softmax(end_points_vgg_16['logits'])

        ########################
        # Using model predictions as ground truth to avoid label leaking
        pred = tf.argmax(
            end_points_inc_v1['Predictions'] + end_points_res_v1_50['probs'] +
            end_points_vgg_16['probs'], 1)
        first_round = tf.cast(tf.equal(i, 0), tf.int64)
        y = first_round * pred + (1 - first_round) * y
        one_hot = tf.one_hot(y, num_classes)
        ########################
        logits = (end_points_inc_v1['Logits'] + end_points_res_v1_50['logits']
                  + end_points_vgg_16['logits']) / 3.0
        cross_entropy = tf.losses.softmax_cross_entropy(one_hot,
                                                        logits,
                                                        label_smoothing=0.0,
                                                        weights=1.0)
        noise = tf.gradients(cross_entropy, x)[0]
        noise = noise / tf.reduce_mean(tf.abs(noise), [1, 2, 3],
                                       keep_dims=True)
        noise = momentum * grad + noise
        x = x + alpha * tf.sign(noise)
        x = tf.clip_by_value(x, x_min, x_max)
        i = tf.add(i, 1)
        return x, y, i, x_max, x_min, noise
Exemplo n.º 12
0
    def arg_scope(self):
        arg_scope_kwargs = self._config.get('arg_scope', {})

        if self.vgg_type:
            return vgg.vgg_arg_scope(**arg_scope_kwargs)
        elif self.resnet_type:
            # It's the same argscope for v1 or v2.
            return resnet_v2.resnet_utils.resnet_arg_scope(**arg_scope_kwargs)
def target_graph(x, y, i, x_max, x_min, grad):

    eps = 2.0 * max_epsilon / 255.0
    alpha = eps / num_iter
    num_classes = 110
    #input image size[224,224,3]

    images3 = tf.image.resize_bilinear(input_diversity(x), [224, 224], align_corners=False)

    with slim.arg_scope(inception.inception_v1_arg_scope()):
        logits_inc_v1, end_points_inc_v1 = inception.inception_v1(
            images3, num_classes=num_classes, is_training=False, scope='InceptionV1')

    # rescale pixle range from [-1, 1] to [0, 255] for resnet_v1 and vgg's input
    image1 = (((input_diversity(x) + 1.0) * 0.5) * 255.0)
    processed_imgs_res_v1_50 = preprocess_for_model(image1, 'resnet_v1_50')
    with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        logits_res_v1_50, end_points_res_v1_50 = resnet_v1.resnet_v1_50(
            processed_imgs_res_v1_50, num_classes=num_classes, is_training=False, scope='resnet_v1_50')

    end_points_res_v1_50['logits'] = tf.squeeze(end_points_res_v1_50['resnet_v1_50/logits'], [1, 2])
    end_points_res_v1_50['probs'] = tf.nn.softmax(end_points_res_v1_50['logits'])

    # image = (((x + 1.0) * 0.5) * 255.0)#.astype(np.uint8)
    image2 = (((input_diversity(x) + 1.0) * 0.5) * 255.0)
    processed_imgs_vgg_16 = preprocess_for_model(image2, 'vgg_16')
    with slim.arg_scope(vgg.vgg_arg_scope()):
        logits_vgg_16, end_points_vgg_16 = vgg.vgg_16(
            processed_imgs_vgg_16, num_classes=num_classes, is_training=False, scope='vgg_16')

    end_points_vgg_16['logits'] = end_points_vgg_16['vgg_16/fc8']
    end_points_vgg_16['probs'] = tf.nn.softmax(end_points_vgg_16['logits'])


    one_hot = tf.one_hot(y, num_classes)

    logits = (end_points_inc_v1['Logits'] + end_points_res_v1_50['logits'] + end_points_vgg_16['logits']) / 3.0
    cross_entropy = tf.losses.softmax_cross_entropy(one_hot,
                                                    logits,
                                                    label_smoothing=0.0,
                                                    weights=1.0)
    noise = tf.gradients(cross_entropy, x)[0]

    noise = tf.nn.depthwise_conv2d(noise, stack_kernel, strides=[1, 1, 1, 1], padding='SAME')
    noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [batch_size, -1]), axis=1),
                               [batch_size, 1, 1, 1])
    noise = momentum * grad + noise
    noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [batch_size, -1]), axis=1),
                               [batch_size, 1, 1, 1])
    noise1 = tf.image.resize_images(noise, [140, 140], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    print("noise shape:", noise.shape)
    noise1 = alpha * tf.clip_by_value(tf.round(noise1), -2, 2)
    noise_paded = tf.pad(noise1,[[0, 0], [42, 42], [42, 42], [0, 0]], constant_values=0.)
    x = x - noise_paded
    x = tf.clip_by_value(x, x_min, x_max)
    print("x.shape:", x.shape)
    i = tf.add(i, 1)
    return x, y, i, x_max, x_min, noise
Exemplo n.º 14
0
def target_graph(x, y, i, x_max, x_min, grad):
    eps = 2.0 * max_epsilon / 255.0
    alpha = eps / num_iter
    num_classes = 110

    with slim.arg_scope(inception.inception_v1_arg_scope()):
        logits_inc_v1, end_points_inc_v1 = inception.inception_v1(
            x, num_classes=num_classes, is_training=False, scope='InceptionV1')

    # rescale pixle range from [-1, 1] to [0, 255] for resnet_v1 and vgg's input
    image = (((x + 1.0) * 0.5) * 255.0)
    processed_imgs_res_v1_50 = preprocess_for_model(image, 'resnet_v1_50')
    with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        logits_res_v1_50, end_points_res_v1_50 = resnet_v1.resnet_v1_50(
            processed_imgs_res_v1_50,
            num_classes=num_classes,
            is_training=False,
            scope='resnet_v1_50')

    end_points_res_v1_50['logits'] = tf.squeeze(
        end_points_res_v1_50['resnet_v1_50/logits'], [1, 2])
    end_points_res_v1_50['probs'] = tf.nn.softmax(
        end_points_res_v1_50['logits'])

    # image = (((x + 1.0) * 0.5) * 255.0)#.astype(np.uint8)
    processed_imgs_vgg_16 = preprocess_for_model(image, 'vgg_16')
    with slim.arg_scope(vgg.vgg_arg_scope()):
        logits_vgg_16, end_points_vgg_16 = vgg.vgg_16(processed_imgs_vgg_16,
                                                      num_classes=num_classes,
                                                      is_training=False,
                                                      scope='vgg_16')

    end_points_vgg_16['logits'] = end_points_vgg_16['vgg_16/fc8']
    end_points_vgg_16['probs'] = tf.nn.softmax(end_points_vgg_16['logits'])

    ########################
    one_hot = tf.one_hot(y, num_classes)
    ########################

    logits = (end_points_inc_v1['Logits'] + end_points_res_v1_50['logits'] +
              end_points_vgg_16['logits']) / 3.0
    cross_entropy = tf.losses.softmax_cross_entropy(one_hot,
                                                    logits,
                                                    label_smoothing=0.0,
                                                    weights=1.0)
    noise = tf.gradients(cross_entropy, x)[0]
    noise = noise / tf.reshape(
        tf.contrib.keras.backend.std(tf.reshape(noise, [batch_size, -1]),
                                     axis=1), [batch_size, 1, 1, 1])
    noise = momentum * grad + noise
    noise = noise / tf.reshape(
        tf.contrib.keras.backend.std(tf.reshape(noise, [batch_size, -1]),
                                     axis=1), [batch_size, 1, 1, 1])
    x = x - alpha * tf.clip_by_value(tf.round(noise), -2, 2)
    x = tf.clip_by_value(x, x_min, x_max)
    i = tf.add(i, 1)
    return x, y, i, x_max, x_min, noise
Exemplo n.º 15
0
def compute_vgg_error(output, reference, layer):
    scaled_output = output * 255 - vgg_mean
    scaled_reference = reference * 255 - vgg_mean
    with slim.arg_scope(vgg.vgg_arg_scope()):
        output_a, output_b = vgg_16(scaled_output)
        reference_a, reference_b = vgg_16(scaled_reference)
    if layer == 0:
        return tf.abs(output_a - reference_a)
    return tf.abs(output_b - reference_b)
Exemplo n.º 16
0
def get_vgg_activations(input,
                        layers=[
                            'vgg_19/conv2/conv2_1', 'vgg_19/conv3/conv3_1',
                            'vgg_19/conv4/conv4_1'
                        ]):
    with slim.arg_scope(vgg.vgg_arg_scope()):
        _, end_points = vgg_19(input)
    activations = [end_points[layer] for layer in layers]
    return activations
Exemplo n.º 17
0
def build_single_vggnet(train_tfdata, is_train, dropout_keep_prob):
    if not FLAGS.is_train or FLAGS.debug_test:
        is_train = False
    with slim.arg_scope(vgg.vgg_arg_scope()):
        identity, end_points = vgg.vgg_16(train_tfdata, num_classes=FLAGS.num_class, is_training=is_train, dropout_keep_prob = dropout_keep_prob)
        # identity, end_points = vgg.vgg_19(train_tfdata, num_classes=FLAGS.num_class, is_training=is_train, dropout_keep_prob = dropout_keep_prob)
        for key in end_points.keys():
            if 'fc7' in key:
                feature = tf.squeeze(end_points[key], [1, 2])
    return identity, feature
Exemplo n.º 18
0
def netvgg(inputs, is_training = True):
    inputs = tf.cast(inputs, tf.float32)
    inputs = ((inputs / 255.0) -0.5)*2
    num_anchors = 9
    with tf.variable_scope("vgg_16"):
        with slim.arg_scope(vgg.vgg_arg_scope()):
            net = inputs
            net = slim.repeat(net, 2, slim.conv2d, 64, [3, 3], scope = 'conv1')
            net = slim.max_pool2d(net, [2, 2], scope = 'pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
            net = slim.max_pool2d(net, [2, 2], scope = 'pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
            net = slim.max_pool2d(net, [2, 2], scope = 'pool3')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
            net = slim.max_pool2d(net, [2, 2], scope = 'pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')

            initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)
            net_cnn = net
            net1 = slim.conv2d(net, 2*num_anchors, [1, 1], scope= "prob",
            weights_initializer=initializer, activation_fn=None)#tf.nn.sigmoid)

            net1 = Reshape((-1, 2), input_shape=(net1.shape[1], net1.shape[2], net1.shape[3]))(net1)
            #net1 = tf.reshape(net1, [0, -1, -1, 2])
            input_shape = tf.shape(net1)
            rshpsssss = tf.reshape(net1, [-1, input_shape[-1]])
            print "rshpsssss", rshpsssss
            #net1 = tf.nn.softmax(net1)
            net2 = slim.conv2d(net, 4*num_anchors, [1, 1], scope='bbox', weights_initializer=initializer, activation_fn=None)
            net2 = Reshape((-1, 4), input_shape=(net2.shape[1], net2.shape[2], net2.shape[3]))(net2)

            net = slim.max_pool2d(net, [2, 2], scope = 'pool5')

        net = slim.flatten(net)

        w_init = tf.contrib.layers.xavier_initializer()
        w_reg = slim.l2_regularizer(0.0005)
        net = slim.fully_connected(net, 4096,
                                   weights_initializer = w_init,
                                   weights_regularizer = w_reg,
                                   scope = 'fc6')
        net = slim.dropout(net, keep_prob = 0.5, is_training = is_training)
        net = slim.fully_connected(net, 4096,
                                   weights_initializer = w_init,
                                   weights_regularizer = w_reg,
                                   scope = 'fc7')
        net = slim.dropout(net, keep_prob = 0.5, is_training = is_training)
        net = slim.fully_connected(net, 1000,
                                   weights_initializer = w_init,
                                   weights_regularizer = w_reg,
                                   scope = 'fc8')
        print("SHAPE!!!!", net)
    return net_cnn, net2, net1, net
Exemplo n.º 19
0
    def arg_scope(self):
        arg_scope_kwargs = self._config.get('arg_scope', {})

        if self.vgg_type:
            return vgg.vgg_arg_scope(**arg_scope_kwargs)

        if self.resnet_type:
            # It's the same arg_scope for v1 or v2.
            return resnet_v2.resnet_utils.resnet_arg_scope(**arg_scope_kwargs)

        raise ValueError('Invalid architecture: "{}"'.format(
            self._config.get('architecture')))
    def __init__(self, inputs, true_labels, is_train=False, num_classes=None):

        self.true_labels = true_labels
        self.NUM_CLASSES = num_classes
        with slim.arg_scope(vgg.vgg_arg_scope()):
            self.output, self.features = vgg.vgg_16(inputs=inputs,
                                                    num_classes=1000,
                                                    is_training=False)
            self.classifier, _ = cnn.fc(input=self.extract_features('fc7'),
                                        num_outputs=self.NUM_CLASSES,
                                        use_relu=False,
                                        name='classifier')
Exemplo n.º 21
0
    def forward(self, input_tensor, is_training):
        dropout_value = 0.5

        # input_tensor = tf.image.resize_images(input_tensor, [224, 224])
        batch_size = tf.shape(input_tensor)[0]

        print("Is training:", is_training)

        with slim.arg_scope(vgg.vgg_arg_scope()):
            h, end_points = vgg.vgg_16(input_tensor, is_training=is_training)

        print(end_points)
        print(list(end_points.keys()))

        h = end_points['vgg_16/pool4']

        h = L.convolution2d_transpose(h, 256, [5, 5], [2, 2], activation_fn=None)
        h = tf.nn.relu(h)
        h = tf.concat([h, end_points['vgg_16/pool3']], axis=3)
        h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        np_seed_mask = np.zeros((1, 56, 56, 1))
        np_seed_mask[:, 28:29, 28:29, :] = 1.0
        seed_mask = tf.constant(np_seed_mask, dtype=tf.float32)
        seed_mask = tf.tile(seed_mask, [batch_size, 1, 1, 1])

        h = L.convolution2d_transpose(h, 128, [5, 5], [2, 2], activation_fn=None)
        h = tf.nn.relu(h)
        h = tf.concat([h, end_points['vgg_16/pool2'], seed_mask], axis=3)
        h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        h = L.convolution2d_transpose(h, 64, [5, 5], [2, 2], activation_fn=None)
        h = tf.nn.relu(h)
        h = tf.concat([h, end_points['vgg_16/pool1']], axis=3)
        h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        h = L.convolution2d_transpose(h, 64, [5, 5], [2, 2], activation_fn=None)
        h = tf.concat([h, input_tensor], axis=3)
        h = tf.nn.relu(h)
        h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        # h = L.convolution2d_transpose(h, 64, [5, 5], [2, 2], activation_fn=None)
        # h = tf.nn.relu(h)
        # h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        # h = L.convolution2d_transpose(h, 64, [5, 5], [2, 2], activation_fn=None)
        # h = tf.nn.relu(h)
        # h = L.dropout(h, keep_prob=dropout_value, is_training=is_training)

        h = L.convolution2d(h, len(self.classes) + 1, [1, 1], [1, 1], activation_fn=None)

        return h
Exemplo n.º 22
0
def build_single_vggnet(train_tfdata, is_train, dropout_keep_prob):
    if not FLAGS.is_train or FLAGS.debug_test:
        is_train = False
    with slim.arg_scope(vgg.vgg_arg_scope()):
        identity, end_points = vgg.vgg_16(train_tfdata,
                                          num_classes=FLAGS.num_class,
                                          is_training=is_train,
                                          dropout_keep_prob=dropout_keep_prob)
        # identity, end_points = vgg.vgg_19(train_tfdata, num_classes=FLAGS.num_class, is_training=is_train, dropout_keep_prob = dropout_keep_prob)
        for key in end_points.keys():
            if 'fc7' in key:
                feature = tf.squeeze(end_points[key], [1, 2])
    return identity, feature
Exemplo n.º 23
0
    def fprop(self, x, **kwargs):
        del kwargs

        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            with slim.arg_scope(vgg.vgg_arg_scope()):
                logits, _ = vgg.vgg_19(
                    x, num_classes=self.nb_classes,
                    dropout_keep_prob=self.dropout_keep_prob,
                    is_training=self.is_training, scope=self.scope)

        probs = tf.nn.softmax(logits)

        return {self.O_LOGITS: logits, self.O_PROBS: probs}
Exemplo n.º 24
0
    def arg_scope(self):
        arg_scope_kwargs = self._config.get('arg_scope', {})

        if self.vgg_type:
            return vgg.vgg_arg_scope(**arg_scope_kwargs)

        if self.resnet_type:
            # It's the same arg_scope for v1 or v2.
            return resnet_v2.resnet_utils.resnet_arg_scope(**arg_scope_kwargs)

        raise ValueError('Invalid architecture: "{}"'.format(
            self._config.get('architecture')
        ))
Exemplo n.º 25
0
def netvgg(inputs, is_training=True):
    """
        Output: probability and regression
        net1: probability
        net2: regression
    """
    inputs = tf.cast(inputs, tf.float32)
    inputs = ((inputs / 255.0) - 0.5) * 2
    num_anchors = 9
    with tf.variable_scope("vgg_16"):
        with slim.arg_scope(vgg.vgg_arg_scope()):
            net = inputs
            net = slim.repeat(net, 2, slim.conv2d, 64, [3, 3], scope='conv1')
            net = slim.max_pool2d(net, [2, 2], scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
            net = slim.max_pool2d(net, [2, 2], scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
            net = slim.max_pool2d(net, [2, 2], scope='pool3')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
            net = slim.max_pool2d(net, [2, 2], scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')

            initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)
            net_cnn = net
            net1 = slim.conv2d(net,
                               2 * num_anchors, [1, 1],
                               scope="prob",
                               weights_initializer=initializer,
                               activation_fn=None)  #tf.nn.sigmoid)

            net1 = Reshape((-1, 2),
                           input_shape=(net1.shape[1], net1.shape[2],
                                        net1.shape[3]))(net1)
            #net1 = tf.reshape(net1, [0, -1, -1, 2])
            input_shape = tf.shape(net1)

            #rshpsssss = tf.reshape(net1, [-1, input_shape[-1]])
            #print "rshpsssss", rshpsssss
            #net1 = tf.nn.softmax(net1)
            net2 = slim.conv2d(net,
                               4 * num_anchors, [1, 1],
                               scope='bbox',
                               weights_initializer=initializer,
                               activation_fn=None)
            net2 = Reshape((-1, 4),
                           input_shape=(net2.shape[1], net2.shape[2],
                                        net2.shape[3]))(net2)

            net = slim.max_pool2d(net, [2, 2], scope='pool5')

    return net_cnn, net2, net1
 def __call__(self, x_input, return_logits=False):
     """Constructs model and return probabilities for given input."""
     reuse = True if self.built else None
     with slim.arg_scope(vgg.vgg_arg_scope()):
         _, end_points = vgg.vgg_16(
             x_input, num_classes=self.nb_classes, is_training=False)
     self.built = True
     self.logits = tf.squeeze(end_points['vgg_16/fc8'])
     # Strip off the extra reshape op at the output
     self.probs = tf.nn.softmax(end_points['vgg_16/fc8'])
     if return_logits:
         return self.logits
     else:
         return self.probs
Exemplo n.º 27
0
    def __call__(self, ens_x_input, vgg_x_input, inc_x_input, tcd_x_input):
        """Constructs model and return probabilities for given input."""
        reuse = True if self.built else None
        logits = None
        aux_logits = None
        weights = [[0.7, 0.1], [0.2, 0.1]]
        all_inputs = [[ens_x_input, tcd_x_input], [inc_x_input, tcd_x_input]]
        scopes = [
            inception_resnet_v2.inception_resnet_v2_arg_scope(),
            inception.inception_v3_arg_scope()
        ]
        reuse_flags = [reuse, True]
        for model_idx, model in enumerate(
            [inception_resnet_v2.inception_resnet_v2, inception.inception_v3]):
            with slim.arg_scope(scopes[model_idx]):
                for idx, inputs in enumerate(all_inputs[model_idx]):
                    result = model(inputs,
                                   num_classes=self.num_classes,
                                   is_training=False,
                                   reuse=reuse_flags[idx])
                    weight = weights[model_idx][idx]
                    # :1 is for slicing out the background class
                    if logits == None:
                        logits = result[0][:, 1:] * weight
                        aux_logits = result[1]['AuxLogits'][:, 1:] * weight
                    else:
                        logits += result[0][:, 1:] * weight
                        aux_logits += result[1]['AuxLogits'][:, 1:] * weight

        with slim.arg_scope(vgg.vgg_arg_scope()):
            weight = 0.1
            result = vgg.vgg_16(vgg_x_input,
                                num_classes=1000,
                                is_training=False)
            logits += result[0] * weight

        with slim.arg_scope(resnet_utils.resnet_arg_scope()):
            weight = 0.05
            result = resnet_v2.resnet_v2_152(vgg_x_input,
                                             num_classes=self.num_classes,
                                             reuse=reuse)
            logits += tf.squeeze(result[0])[:, 1:] * weight

        self.built = True
        aux_weight = 0.8
        logits += aux_logits * aux_weight

        predictions = layers_lib.softmax(logits)
        return predictions
Exemplo n.º 28
0
def main():
    with tf.gfile.FastGFile('output_graph.pb', 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        tf.import_graph_def(graph_def, name='')

        with tf.Graph().as_default() as graph:
            inputs = tf.placeholder(dtype=tf.float32, shape=[1, 224, 224, 3])
            with slim.arg_scope(vgg.vgg_arg_scope()):
                _, end_points = vgg.vgg_16(inputs,
                                           num_classes=1000,
                                           is_training=True,
                                           dropout_keep_prob=0.5,
                                           spatial_squeeze=False,
                                           scope='vgg_16')
            stats_graph(graph)
Exemplo n.º 29
0
def Deeplab_v1(inputs, num_classes):
    '''A TensorFlow implementation of Deeplab_v1 model based on
	   http://liangchiehchen.com/projects/DeepLab-LargeFOV.html 
	
	Args:
		inputs: A 4-D tensor with dimensions [batch_size, height, width, channels]
		num_classes: Integer, the total number of categories in the dataset
	Returns:
		A score map with dimensions [batch_size, 1/8*height, 1/8*width, num_classes]

	'''
    with slim.arg_scope(vgg.vgg_arg_scope()):
        _, end_points = vgg.vgg_16(inputs,
                                   num_classes=1000,
                                   is_training=True,
                                   dropout_keep_prob=0.5,
                                   spatial_squeeze=False,
                                   scope='vgg_16')
    conv4 = end_points["vgg_16/conv4/conv4_3"]  # 1/8H * 1/8 * 256

    with tf.variable_scope('Deeplab_v1'):
        pool4 = slim.max_pool2d(conv4, [3, 3],
                                stride=1,
                                padding='SAME',
                                scope='pool4')

        conv5_1 = slim.conv2d(pool4, 512, [3, 3], rate=2, scope='conv5_1')
        conv5_2 = slim.conv2d(conv5_1, 512, [3, 3], rate=2, scope='conv5_2')
        conv5_3 = slim.conv2d(conv5_2, 512, [3, 3], rate=2, scope='conv5_3')
        pool5_1 = slim.max_pool2d(conv5_3, [3, 3],
                                  stride=1,
                                  padding='SAME',
                                  scope='pool5_1')
        pool5_2 = slim.avg_pool2d(pool5_1, [3, 3],
                                  stride=1,
                                  padding='SAME',
                                  scope='pool5_2')

        conv6 = slim.conv2d(pool5_2, 1024, [3, 3], rate=12, scope='conv6')
        dropout1 = slim.dropout(conv6, keep_prob=0.5)
        conv7 = slim.conv2d(dropout1, 1024, [1, 1], scope='conv7')
        dropout2 = slim.dropout(conv7, keep_prob=0.5)
        logits = slim.conv2d(dropout2,
                             num_classes, [1, 1],
                             activation_fn=None,
                             scope='logits')
        return logits
Exemplo n.º 30
0
def get_predicted_y(x, num_classes, args):
    """Calculate predicted label"""

    slim = tf.contrib.slim
    with slim.arg_scope(inception.inception_v1_arg_scope()):
        logits_inc_v1, end_points_inc_v1 = inception.inception_v1(
            dimension_224(x),
            num_classes=num_classes,
            is_training=False,
            scope='InceptionV1')

    image = (((x + 1.0) * 0.5) * 255.0)
    processed_imgs_res_v1_50 = preprocess_for_model(image, 'resnet_v1_50')
    with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        logits_res_v1_50, end_points_res_v1_50 = resnet_v1.resnet_v1_50(
            dimension_224(processed_imgs_res_v1_50),
            num_classes=num_classes,
            is_training=False,
            scope='resnet_v1_50')

    end_points_res_v1_50['logits'] = tf.squeeze(
        end_points_res_v1_50['resnet_v1_50/logits'], [1, 2])
    end_points_res_v1_50['probs'] = tf.nn.softmax(
        end_points_res_v1_50['logits'])

    processed_imgs_vgg_16 = preprocess_for_model(image, 'vgg_16')
    with slim.arg_scope(vgg.vgg_arg_scope()):
        logits_vgg_16, end_points_vgg_16 = vgg.vgg_16(
            dimension_224(processed_imgs_vgg_16),
            num_classes=num_classes,
            is_training=False,
            scope='vgg_16')

    end_points_vgg_16['logits'] = end_points_vgg_16['vgg_16/fc8']
    end_points_vgg_16['probs'] = tf.nn.softmax(end_points_vgg_16['logits'])

    logits = [None] * args.num_model
    pred_y = [None] * args.num_model

    logits[0] = end_points_inc_v1['Logits']
    logits[1] = end_points_res_v1_50['logits']
    logits[2] = end_points_vgg_16['logits']

    for i in range(args.num_model):
        pred_y[i] = tf.argmax(tf.nn.softmax(logits[i]), 1)

    return pred_y, logits
Exemplo n.º 31
0
def ens_model(x):

    #input remains in[0,1]
    image = (x * 255.0)
    num_classes = 110
    processed_incv1 = preprocess_for_model(image, 'inception_v1')
    with slim.arg_scope(inception.inception_v1_arg_scope()):
        logits_inc_v1, end_points_inc_v1 = inception.inception_v1(
            processed_incv1,
            num_classes=num_classes,
            is_training=False,
            scope='InceptionV1')

    processed_imgs_res_v1_50 = preprocess_for_model(image, 'resnet_v1_50')
    with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        logits_res_v1_50, end_points_res_v1_50 = resnet_v1.resnet_v1_50(
            processed_imgs_res_v1_50,
            num_classes=num_classes,
            is_training=False,
            scope='resnet_v1_50')

    end_points_res_v1_50['logits'] = tf.squeeze(
        end_points_res_v1_50['resnet_v1_50/logits'], [1, 2])
    end_points_res_v1_50['probs'] = tf.nn.softmax(
        end_points_res_v1_50['logits'])

    # image = (((x + 1.0) * 0.5) * 255.0)#.astype(np.uint8)
    processed_imgs_vgg_16 = preprocess_for_model(image, 'vgg_16')
    with slim.arg_scope(vgg.vgg_arg_scope()):
        logits_vgg_16, end_points_vgg_16 = vgg.vgg_16(processed_imgs_vgg_16,
                                                      num_classes=num_classes,
                                                      is_training=False,
                                                      scope='vgg_16')

    end_points_vgg_16['logits'] = end_points_vgg_16['vgg_16/fc8']
    end_points_vgg_16['probs'] = tf.nn.softmax(end_points_vgg_16['logits'])

    ########################
    #one_hot = tf.one_hot(y, num_classes)
    ########################

    logits = (end_points_inc_v1['Logits'] + end_points_res_v1_50['logits'] +
              end_points_vgg_16['logits']) / 3.0
    print('logits.shape:', logits.shape)

    return logits
Exemplo n.º 32
0
    def test_vgg(self):
        with slim.arg_scope(vgg.vgg_arg_scope()):
            net, end_points = vgg.vgg_16(self.inputs,
                                         self.nbclasses,
                                         is_training=False)
            net = slim.softmax(net)
        saver = tf.train.Saver(tf.global_variables())
        check_point = 'test/data/vgg_16.ckpt'

        sess = tf.InteractiveSession()
        saver.restore(sess, check_point)

        self.sess = sess
        self.graph_origin = tf.get_default_graph()
        self.target_op_name = darkon.Gradcam.candidate_featuremap_op_names(
            sess, self.graph_origin)[-2]
        self.model_name = 'vgg'