Exemplo n.º 1
0
def build_decoder(batch_size, inputenc, name="decoder"):
    with tf.variable_scope(name):
        g1 = fc(inputenc, 64, scope='dec_fc1', activation_fn=tf.nn.relu)
        g2 = fc(g1, 128, scope='dec_fc2', activation_fn=tf.nn.relu)
        g3 = fc(g2, 256, scope='dec_fc3', activation_fn=tf.nn.relu)
        x_hat = fc(g3, input_dim, scope='dec_fc4', activation_fn=tf.sigmoid)
        return x_hat
Exemplo n.º 2
0
def _net(net, hidden_layer_size=16):
    net = fc(net, hidden_layer_size, activation_fn=tf.nn.sigmoid, scope='fc0',
        weights_initializer =\
            tf.random_normal_initializer(stddev=1/np.sqrt(observation_size)))
    net = fc(net, action_size, activation_fn=tf.nn.softmax, scope='fc1',
        weights_initializer =\
            tf.random_normal_initializer(stddev=1/np.sqrt(hidden_layer_size)))
    return net
Exemplo n.º 3
0
 def createNetworkDU(self, X, iStep):
     with tf.compat.v1.variable_scope("NetWork"+str(iStep), reuse=tf.compat.v1.AUTO_REUSE):
         fPrev= fc(X, int(self.layerSize[0]), scope='enc_fc1', activation_fn=self.activation)
         for i in np.arange(len(self.layerSize)-1):
             scopeName='enc_fc'+str(i+2)
             f = fc(fPrev,int(self.layerSize[i+1]), scope=scopeName, activation_fn=self.activation)
             fPrev = f
         Z  = fc(fPrev,self.d, scope='uPDu',activation_fn= None)
     return Z
Exemplo n.º 4
0
 def createNetwork(self, X,iStep, renormalizeFactor):
     with tf.compat.v1.variable_scope("NetWorkU"+str(iStep) , reuse=tf.compat.v1.AUTO_REUSE):
         fPrev= fc(X, int(self.layerSize[0]), scope='enc_fc1', activation_fn=self.activation)
         for i in np.arange(len(self.layerSize)-1):
             scopeName='enc_fc'+str(i+2)
             f = fc(fPrev,int(self.layerSize[i+1]), scope=scopeName, activation_fn=self.activation)
             fPrev = f
         UZ  = fc(fPrev,1, scope='UZ',activation_fn= None)
     return  UZ[:,0]
Exemplo n.º 5
0
 def createNetwork(self, t, x):
     time_and_X = tf.concat([t,x], axis=-1) 
     with tf.variable_scope("NetWork" , reuse=tf.AUTO_REUSE):
         fPrev= fc(time_and_X, self.layerSize[0], scope='enc_fc1', activation_fn=self.activation)
         for i in np.arange(len(self.layerSize)-1):
             scopeName='enc_fc'+str(i+2)
             f = fc(fPrev,self.layerSize[i+1], scope=scopeName, activation_fn=self.activation)
             fPrev = f
         U  = fc(fPrev,1, scope='uPDu',activation_fn= None)
     return  U
Exemplo n.º 6
0
    def build(self):
        # input
        self.x = tf.placeholder(name='x',
                                dtype=tf.float32,
                                shape=[None, input_dim])

        # encoder
        # slim.fc(input, outputdim, scope, act_fn)
        f1 = fc(self.x, 512, scope='enc_fc1', activation_fn=tf.nn.elu)
        f2 = fc(f1, 384, scope='enc_fc2', activation_fn=tf.nn.elu)
        f3 = fc(f2, 256, scope='enc_fc3', activation_fn=tf.nn.elu)

        self.z_mu = fc(f3, self.n_z, scope='enc_fc4_mu', activation_fn=None)
        # log (sigma^2)
        self.z_log_sigma_sq = fc(f3,
                                 self.n_z,
                                 scope='enc_fc4_sigma',
                                 activation_fn=None)
        # N(z_mu, z_sigma)
        eps = tf.random_normal(shape=tf.shape(self.z_log_sigma_sq),
                               mean=0,
                               stddev=1,
                               dtype=tf.float32)  # Unigaussian

        self.z = self.z_mu + tf.sqrt(tf.exp(
            self.z_log_sigma_sq)) * eps  # Reversing to get back sigma
        # decoder
        g1 = fc(self.z, 256, scope='dec_fc1', activation_fn=tf.nn.elu)
        g2 = fc(g1, 384, scope='dec_fc2', activation_fn=tf.nn.elu)
        g3 = fc(g2, 512, scope='dec_fc3', activation_fn=tf.nn.elu)
        self.x_hat = fc(g3,
                        input_dim,
                        scope='dec_fc4',
                        activation_fn=tf.sigmoid)  # sigmoid b/c onehot encoded

        # losses
        # reconstruction loss
        # x <-> x_hat
        # H(x, x_hat) = - \Sigma x * log(x_hat) + (1-x)*log(1-x_hat)
        epsilon = 1e-10  # to prevent log(0)
        recon_loss = -tf.reduce_sum(
            self.x * tf.log(self.x_hat + epsilon) +
            (1 - self.x) * tf.log(1 - self.x_hat + epsilon),
            axis=1)

        # latent loss
        # KL divergence: measure the difference between two distributions
        # the latent distribution and N(0, 1)
        latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq - tf.square(
            self.z_mu) - tf.exp(self.z_log_sigma_sq),
                                           axis=1)

        # total loss
        self.total_loss = tf.reduce_mean(recon_loss + latent_loss)

        # optimizer
        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(self.total_loss)
Exemplo n.º 7
0
 def generator(self, z, reuse=False):
     with tf.variable_scope('generator') as scope:
         if reuse:
             scope.reuse_variables()
         w1 = tf.Variable(tf.random_normal(shape=[]))
         g1 = fc(z,
                 self.g_hidden_size,
                 scope='gen_fc1',
                 activation_fn=tf.nn.relu)
         g_log = fc(g1, self.img_dim, scope='gen_fc2', activation_fn=None)
         g2 = tf.nn.sigmoid(g_log)
     return g_log, g2
Exemplo n.º 8
0
 def createNetworkNotTrainable(self, X, iStep, weightInit, biasInit):
     with tf.compat.v1.variable_scope("NetWorkGamNotTrain" + "_" +
                                      str(iStep),
                                      reuse=False):
         cMinW = 0
         cMinB = 0
         fPrev = fc(X,
                    int(self.layerSize[0]),
                    scope='enc_fc1',
                    activation_fn=self.activation,
                    weights_initializer=tf.constant_initializer(
                        np.reshape(weightInit[:self.d * self.layerSize[0]],
                                   [self.d, self.layerSize[0]])),
                    biases_initializer=tf.constant_initializer(
                        biasInit[0:self.layerSize[0]]),
                    trainable=False)
         cMinW += self.d * self.layerSize[0]
         cMinB += self.layerSize[0]
         for i in np.arange(len(self.layerSize) - 1):
             scopeName = 'enc_fc' + str(i + 2)
             f = fc(fPrev,
                    int(self.layerSize[i + 1]),
                    scope=scopeName,
                    activation_fn=self.activation,
                    weights_initializer=tf.constant_initializer(
                        np.reshape(
                            weightInit[cMinW:cMinW + self.layerSize[i] *
                                       self.layerSize[i + 1]],
                            [self.layerSize[i], self.layerSize[i + 1]])),
                    biases_initializer=tf.constant_initializer(
                        biasInit[cMinB:cMinB + self.layerSize[i + 1]]),
                    trainable=False)
             cMinW += self.layerSize[i] * self.layerSize[i + 1]
             cMinB += self.layerSize[i + 1]
             fPrev = f
         #  D2U -> d^2
         sizeFin = int(self.d * self.d)
         ZGam = fc(
             fPrev,
             sizeFin,
             scope='Gam',
             activation_fn=None,
             weights_initializer=tf.constant_initializer(
                 np.reshape(
                     weightInit[cMinW:cMinW +
                                self.layerSize[len(self.layerSize) - 1] *
                                sizeFin],
                     [self.layerSize[len(self.layerSize) - 1], sizeFin])),
             biases_initializer=tf.constant_initializer(
                 biasInit[cMinB:cMinB + sizeFin]),
             trainable=False)
     return tf.reshape(ZGam, [tf.shape(X)[0], self.d, self.d])
Exemplo n.º 9
0
    def build(self):
        self.x = tf.placeholder(name='x',
                                dtype=tf.float32,
                                shape=[None, input_dim])
        n_hidden_f1 = 512
        n_hidden_f2 = 384
        n_hidden_f3 = 256

        # Encode
        # x -> z_mean, z_sigma -> z
        f1 = fc(self.x, n_hidden_f1, scope='enc_fc1',
                activation_fn=tf.nn.elu)  # AUTOREUSE
        f2 = fc(f1, n_hidden_f2, scope='enc_fc2', activation_fn=tf.nn.elu)
        f3 = fc(f2, n_hidden_f3, scope='enc_fc3', activation_fn=tf.nn.elu)

        self.z_mu = fc(f3, self.n_z, scope='enc_fc4_mu', activation_fn=None)
        self.z_log_sigma_sq = fc(f3,
                                 self.n_z,
                                 scope='enc_fc4_sigma',
                                 activation_fn=None)

        eps = tf.random_normal(shape=tf.shape(self.z_log_sigma_sq),
                               mean=0,
                               stddev=1,
                               dtype=tf.float32)
        self.z = self.z_mu + tf.sqrt(tf.exp(self.z_log_sigma_sq)) * eps

        # Decode
        # z -> x_hat
        g1 = fc(self.z, n_hidden_f3, scope='dec_fc1', activation_fn=tf.nn.elu)
        g2 = fc(g1, n_hidden_f2, scope='dec_fc2', activation_fn=tf.nn.elu)
        g3 = fc(g2, n_hidden_f1, scope='dec_fc3', activation_fn=tf.nn.elu)
        self.x_hat = fc(g3,
                        input_dim,
                        scope='dec_fc4',
                        activation_fn=tf.sigmoid)

        # Loss: Reconstruction loss: Minimize the cross-entropy loss
        # H(x, x_hat) = -\Sigma x*log(x_hat) + (1-x)*log(1-x_hat)
        epsilon = 1e-10
        recon_loss = -tf.reduce_sum(
            self.x * tf.log(epsilon + self.x_hat) +
            (1 - self.x) * tf.log(epsilon + 1 - self.x_hat),
            axis=1)
        self.recon_loss = tf.reduce_mean(recon_loss)

        # Latent loss
        # Kullback Leibler divergence: measure the difference between two distributions
        # Here we measure the divergence between the latent distribution and N(0, 1)
        latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq - tf.square(
            self.z_mu) - tf.exp(self.z_log_sigma_sq),
                                           axis=1)
        self.latent_loss = tf.reduce_mean(latent_loss)
        self.total_loss = tf.reduce_mean(recon_loss + latent_loss)
        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(self.total_loss)
        return
Exemplo n.º 10
0
    def build(self):
        self.x = tf.placeholder(name='x',
                                dtype=tf.float32,
                                shape=[None, self.input_dim])

        # Encode
        # x -> z_mean, z_sigma -> z
        f1 = fc(self.x, 256, scope='enc_fc1', activation_fn=tf.nn.relu)
        f2 = fc(f1, 128, scope='enc_fc2', activation_fn=tf.nn.relu)
        f3 = fc(f2, 64, scope='enc_fc3', activation_fn=tf.nn.relu)
        self.z_mu = fc(f3, self.n_z, scope='enc_fc4_mu', activation_fn=None)
        self.z_log_sigma_sq = fc(f3,
                                 self.n_z,
                                 scope='enc_fc4_sigma',
                                 activation_fn=None)
        eps = tf.random_normal(shape=tf.shape(self.z_log_sigma_sq),
                               mean=0,
                               stddev=1,
                               dtype=tf.float32)
        self.z = self.z_mu + tf.sqrt(tf.exp(self.z_log_sigma_sq)) * eps

        # Decode
        # z -> x_hat
        g1 = fc(self.z, 64, scope='dec_fc1', activation_fn=tf.nn.relu)
        g2 = fc(g1, 128, scope='dec_fc2', activation_fn=tf.nn.relu)
        g3 = fc(g2, 256, scope='dec_fc3', activation_fn=tf.nn.relu)
        self.x_hat = fc(g3,
                        self.input_dim,
                        scope='dec_fc4',
                        activation_fn=tf.sigmoid)

        # Loss
        # Reconstruction loss
        # Mean-squared error loss
        self.recon_loss = tf.reduce_mean(
            tf.squared_difference(self.x, self.x_hat))

        # Latent loss
        # KL divergence: measure the difference between two distributions
        # Here we measure the divergence between
        # the latent distribution and N(0, 1)
        latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq - tf.square(
            self.z_mu) - tf.exp(self.z_log_sigma_sq),
                                           axis=1)
        self.latent_loss = tf.reduce_mean(latent_loss)

        self.total_loss = self.recon_loss + self.latent_loss

        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(self.total_loss)

        self.losses = {
            'recon_loss': self.recon_loss,
            'latent_loss': self.latent_loss,
            'total_loss': self.total_loss,
        }
        return
Exemplo n.º 11
0
 def createNetworkWithInitializer(self, X, iStep, weightInit, biasInit,
                                  renormalizeFactor):
     with tf.compat.v1.variable_scope("NetWorkUZ" + str(iStep),
                                      reuse=tf.compat.v1.AUTO_REUSE):
         cMinW = 0
         cMinB = 0
         fPrev = fc(X,
                    int(self.layerSize[0]),
                    scope='enc_fc1',
                    activation_fn=self.activation,
                    weights_initializer=tf.constant_initializer(
                        np.reshape(weightInit[:self.d * self.layerSize[0]],
                                   [self.d, self.layerSize[0]])),
                    biases_initializer=tf.constant_initializer(
                        biasInit[0:self.layerSize[0]]),
                    trainable=True)
         cMinW += self.d * self.layerSize[0]
         cMinB += self.layerSize[0]
         for i in np.arange(len(self.layerSize) - 1):
             scopeName = 'enc_fc' + str(i + 2)
             f = fc(fPrev,
                    int(self.layerSize[i + 1]),
                    scope=scopeName,
                    activation_fn=self.activation,
                    weights_initializer=tf.constant_initializer(
                        np.reshape(
                            weightInit[cMinW:cMinW + self.layerSize[i] *
                                       self.layerSize[i + 1]],
                            [self.layerSize[i], self.layerSize[i + 1]])),
                    biases_initializer=tf.constant_initializer(
                        biasInit[cMinB:cMinB + self.layerSize[i + 1]]),
                    trainable=True)
             cMinW += self.layerSize[i] * self.layerSize[i + 1]
             cMinB += self.layerSize[i + 1]
             fPrev = f
         UDU = fc(
             fPrev,
             self.d + 1,
             scope='UZ',
             activation_fn=None,
             weights_initializer=tf.constant_initializer(
                 np.reshape(
                     weightInit[cMinW:cMinW +
                                self.layerSize[len(self.layerSize) - 1] *
                                (self.d + 1)],
                     [self.layerSize[len(self.layerSize) - 1], self.d + 1
                      ])),
             biases_initializer=tf.constant_initializer(
                 biasInit[cMinB:cMinB + (self.d + 1)]),
             trainable=True)
     return UDU[:, 0], UDU[:, 1:]
Exemplo n.º 12
0
    def __build_graph__(self, layers, cond_sz):
        input_sz = layers[0]
        latent_sz = layers[-1] / 2

        # encoder (parametrization of approximate posterior q(z|x))
        x = tf.placeholder(tf.float32, [None, input_sz])  # input layer
        y = tf.placeholder(tf.float32, [None, cond_sz])  # input layer
        with tf.variable_scope('encoder', reuse=False):
            fc_x = tf.concat([x, y], axis=1)
            for hidden in layers[1:-1]:  # hidden layers
                fc_x = fc(fc_x, hidden)
            z_param = fc(fc_x, latent_sz * 2, activation_fn=None)
            z_log_sigma_sq = z_param[:, :
                                     latent_sz]  # log deviation square of q(z|x)
            z_mu = z_param[:, latent_sz:]  # mean of q(z|x)

            # sample latent variable z from q(z|x)
            eps = tf.random_normal(shape=tf.shape(z_log_sigma_sq))
            z = tf.sqrt(tf.exp(z_log_sigma_sq)) * eps + z_mu

        # decoder (parametrization of likelihood p(x|z))
        # it follows the mirror structure of encoder
        with tf.variable_scope('decoder', reuse=False):
            fc_z = tf.concat([z, y], axis=1)
            for hidden in layers[::-1][1:-1]:  # hidden layers
                fc_z = fc(fc_z, hidden)
            x_hat = fc(fc_z, input_sz,
                       activation_fn=tf.sigmoid)  # reconstruction layer

        # loss: negative of Evidence Lower BOund (ELBO)
        # 1. KL-divergence: KL(q(z|x)||p(z))
        # (divergence between two multi-variate normal distribution, please refer to wikipedia)
        kl_loss = -tf.reduce_mean(0.5 * tf.reduce_sum( \
                  1+z_log_sigma_sq-tf.square(z_mu)-tf.exp(z_log_sigma_sq), axis=1))

        # 2. Likelihood: p(x|z)
        # also called as reconstruction loss
        # we parametrized it with binary cross-entropy loss as MNIST contains binary images
        eps = 1e-10  # add small number to avoid log(0.0)
        recon_loss = tf.reduce_mean(-tf.reduce_sum( \
                      x * tf.log(eps + x_hat) + (1 - x) * tf.log(1 - x_hat + eps), axis=1))
        total_loss = kl_loss + 3 * recon_loss

        # record variables
        self.z = z
        self.total_loss, self.recon_loss, self.kl_loss = total_loss, recon_loss, kl_loss
        self.x, self.y, self.x_hat = x, y, x_hat
Exemplo n.º 13
0
def build_encoder(batch_size, inputenc, name="encoder"):
    with tf.variable_scope(name):
        # Encode
        # x -> z_mean, z_sigma -> z
        # inputenc = tf.reshape(inputenc, [-1, inputenc.getshape().as_list()[0]])
        f1 = fc(inputenc, 256, scope='enc_fc1', activation_fn=tf.nn.relu)
        f2 = fc(f1, 128, scope='enc_fc2', activation_fn=tf.nn.relu)
        f3 = fc(f2, 64, scope='enc_fc3', activation_fn=tf.nn.relu)
        z_mu = fc(f3, n_z, scope='enc_fc4_mu', activation_fn=None)
        z_log_sigma_sq = fc(f3, n_z, scope='enc_fc4_sigma', activation_fn=None)
        eps = tf.random_normal(shape=tf.shape(z_log_sigma_sq),
                               mean=0,
                               stddev=1,
                               dtype=tf.float32)
        z = z_mu + tf.sqrt(tf.exp(z_log_sigma_sq)) * eps

        return f2, z
Exemplo n.º 14
0
    def build(self):
        self.x = tf.placeholder(name='x',
                                dtype=tf.float32,
                                shape=[None, self.input_dim])

        f1 = fc(self.x, 10, scope='fc1', activation_fn=tf.nn.elu)
        f2 = fc(f1, 10, scope='fc2', activation_fn=tf.nn.elu)
        self.strategy = fc(f2,
                           self.n,
                           scope='fc3',
                           activation_fn=tf.nn.sigmoid)
        self.strategy = self.strategy / tf.reduce_sum(self.strategy)
        self.u = self.utility(self.x, self.strategy, self.input_dim)
        # Loss
        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(self.u)
        return
Exemplo n.º 15
0
 def createNetwork(self, X, iStep, renormalizeFactor):
     with tf.compat.v1.variable_scope("NetWorkGam" + str(iStep),
                                      reuse=tf.compat.v1.AUTO_REUSE):
         fPrev = fc(X,
                    int(self.layerSize[0]),
                    scope='enc_fc1',
                    activation_fn=self.activation)
         for i in np.arange(len(self.layerSize) - 1):
             scopeName = 'enc_fc' + str(i + 2)
             f = fc(fPrev,
                    int(self.layerSize[i + 1]),
                    scope=scopeName,
                    activation_fn=self.activation)
             fPrev = f
         #  D2U -> d^2
         sizeFin = int(self.d * self.d)
         ZGam = fc(fPrev, sizeFin, scope='Gam', activation_fn=None)
     return tf.reshape(ZGam, [tf.shape(X)[0], self.d, self.d])
Exemplo n.º 16
0
 def createNetworkWithInitializer(self, X, iStep, weightInit, biasInit, renormalizeFactor):
     with tf.compat.v1.variable_scope("NetWork"+str(iStep) , reuse=tf.compat.v1.AUTO_REUSE):
         cMinW =0
         cMinB= 0
         fPrev= fc(X, int(self.layerSize[0]), scope='enc_fc1', activation_fn=self.activation,  weights_initializer=tf.constant_initializer(np.reshape(weightInit[:self.d*int(self.layerSize[0])],[self.d,int(self.layerSize[0])])), biases_initializer= tf.constant_initializer(biasInit[0:int(self.layerSize[0])]) )
         cMinW += self.d*int(self.layerSize[0])
         cMinB += int( self.layerSize[0])
         for i in np.arange(len(self.layerSize)-1):
             scopeName='enc_fc'+str(i+2)
             f = fc(fPrev,int(self.layerSize[i+1]), scope=scopeName, activation_fn=self.activation,  weights_initializer=tf.constant_initializer(np.reshape(weightInit[cMinW : cMinW+int(self.layerSize[i])*int(self.layerSize[i+1])],[int(self.layerSize[i]),int(self.layerSize[i+1])])) , biases_initializer= tf.constant_initializer(biasInit[cMinB:cMinB+int(self.layerSize[i+1])]))
             cMinW+= int(self.layerSize[i])*int(self.layerSize[i+1])
             cMinB+= int(self.layerSize[i+1])
             fPrev = f
         U  = fc(fPrev,1, scope='U',activation_fn= None, weights_initializer=tf.constant_initializer(np.reshape(weightInit[cMinW:cMinW+int(self.layerSize[len(self.layerSize)-1])],
                                                                                                                   [int(self.layerSize[len(self.layerSize)-1]),1])),
                 biases_initializer= tf.constant_initializer(biasInit[cMinB:cMinB+1]))
         DU = tf.gradients(U,X)
     return  U[:,0], DU[0]/renormalizeFactor
Exemplo n.º 17
0
def decoder(latent_var, hidden_dim, n_layers, activation, drop_rate,
            is_training):
    """
   decoder function

   :param latent_var: latent space sample
   :param hidden_dim: number of nodes in hidden layers
   :param n_layers: number of hidden layers
   :param activation: activation function
   :param drop_rate: dropout rate
   :param is_training: dropout during network traning
   :returns: last hidden layer
   """
    hidden_dec = []
    hidden_dec_bn = []
    for i in range(n_layers):
        if i == 0:
            hidden_dec.append(
                fc(latent_var, hidden_dim, scope="hidden_dec%i" % i))
            hidden_dec_bn.append(
                tf.layers.batch_normalization(hidden_dec[i],
                                              name="hidden_dec%i_bn" % i))
            if drop_rate > 0:
                hidden_dec_bn.append(
                    tf.layers.dropout(hidden_dec_bn[i],
                                      rate=drop_rate,
                                      name="hiddden_dec%i_dp" % i,
                                      training=is_training))
            else:
                hidden_dec_bn.append(hidden_dec_bn[i])
        else:
            hidden_dec.append(
                fc(hidden_dec_bn[i], hidden_dim, scope="hidden_dec%i" % i))
            hidden_dec_bn.append(
                tf.layers.batch_normalization(hidden_dec[i],
                                              name="hidden_dec%i_bn" % i))
            if drop_rate > 0:
                hidden_dec_bn.append(
                    tf.layers.dropout(hidden_dec_bn[i + 1],
                                      rate=drop_rate,
                                      name="hiddden_dec%i_dp" % i,
                                      training=is_training))

    return hidden_dec_bn[-1]
Exemplo n.º 18
0
def encoder(batch, hidden_dim, n_layers, activation, drop_rate, is_training):
    """
   encoder function

   :param batch: normalized daya batch
   :param hidden_dim: number of nodes in hidden layers
   :param n_layers: number of hidden layers
   :param activation: activation function
   :param drop_rate: dropout rate
   :param is_training: dropout during network traning
   :returns: last hidden layer
   """
    hidden_enc = []
    hidden_enc_bn = []
    for i in range(n_layers):
        if i == 0:
            hidden_enc.append(fc(batch, hidden_dim, scope="hidden_in%i" % i))
            hidden_enc_bn.append(
                tf.layers.batch_normalization(hidden_enc[i],
                                              name="hidden_in%i_bn" % i))
            if drop_rate > 0:
                hidden_enc_bn.append(
                    tf.layers.dropout(hidden_enc_bn[i],
                                      rate=drop_rate,
                                      name="hiddden_in%i_dp" % i,
                                      training=is_training))
            else:
                hidden_enc_bn.append(hidden_enc_bn[i])
        else:
            hidden_enc.append(
                fc(hidden_enc_bn[i], hidden_dim, scope="hidden_in%i" % i))
            hidden_enc_bn.append(
                tf.layers.batch_normalization(hidden_enc[i],
                                              name="hidden_in%i_bn" % i))
            if drop_rate > 0:
                hidden_enc_bn.append(
                    tf.layers.dropout(hidden_enc_bn[i + 1],
                                      rate=drop_rate,
                                      name="hiddden_in%i_dp" % i,
                                      training=is_training))

    return hidden_enc_bn[-1]
Exemplo n.º 19
0
    def discriminator(self, x, reuse=False):
        with tf.variable_scope(
                'discriminator',
                reuse=reuse) as scope:  ### reuse = tf.AUTO_REUSE
            #if reuse:
            #	scope.reuse_variables()
            '''
			w1 = tf.Variable(tf.random_normal(shape = [x.get_shape()[1], self.d_hidden_size], dtype = tf.float32))
			b1 = tf.Variable(tf.zeros([self.d_hidden_size],dtype=tf.float32))
			w2 = tf.Variable(tf.random_normal(shape = [self.d_hidden_size, 1], dtype = tf.float32))
			b2 = tf.Variable(tf.zeros([1],dtype=tf.float32))
			h1 = tf.nn.relu(tf.matmul(x, w1) + b1)
			h2 = tf.matmul(h1,w2) + b2
			h2_act = tf.nn.sigmoid(h2)'''
            d1 = fc(x,
                    self.d_hidden_size,
                    scope='dis_fc1',
                    activation_fn=tf.nn.relu)
            d_log = fc(d1, 1, scope='dis_fc2', activation_fn=None)
            d2 = tf.nn.sigmoid(d_log)
        return d_log, d2
Exemplo n.º 20
0
    def build(self, input_dim):
        self.x = tf.placeholder(name='x',
                                dtype=tf.float32,
                                shape=[None, input_dim])

        # Encode
        # x -> z_mean, z_sigma -> z
        f1 = fc(self.x,
                self.hidden_layers[0],
                scope='ae_enc_fc1',
                activation_fn=tf.nn.relu)
        # f2 = fc(f1, 60, scope='enc_fc2', activation_fn=tf.nn.tanh)
        f3 = fc(f1,
                self.hidden_layers[1],
                scope='ae_enc_fc3',
                activation_fn=tf.nn.relu)
        # f4 = fc(f3, 20, scope='enc_fc4', activation_fn=tf.nn.relu)

        self.z = fc(f3,
                    self.hidden_layers[2],
                    scope='ae_enc_fc5_mu',
                    activation_fn=None)

        # Decode
        # z,y -> x_hat
        # g1 = fc(self.Z, 20, scope='dec_fc1', activation_fn=tf.nn.relu)
        g2 = fc(self.z,
                self.hidden_layers[1],
                scope='ae_dec_fc2',
                activation_fn=tf.nn.relu)
        g3 = fc(g2,
                self.hidden_layers[0],
                scope='ae_dec_fc3',
                activation_fn=tf.nn.relu)
        # g4 = fc(g3, 85, scope='dec_fc4', activation_fn=tf.nn.tanh)

        self.x_hat = fc(g3,
                        input_dim,
                        scope='ae_dec_fc5',
                        activation_fn=tf.sigmoid)
        # self.x_res = self.x_hat[:,0:input_dim]

        # Loss
        # Reconstruction loss
        # Minimize the cross-entropy loss
        # H(x, x_hat) = -\Sigma x*log(x_hat) + (1-x)*log(1-x_hat)
        recon_loss = tf.reduce_mean(tf.square(self.x - self.x_hat),
                                    1)  # (((self.x - y)**2).mean(1)).mean()
        # epsilon = 1e-10
        # recon_loss = -tf.reduce_sum(
        #    self.x * tf.log(epsilon+self.x_hat) + (1-self.x) * tf.log(epsilon+1-self.x_hat),
        #    axis=1
        # )
        self.recon_loss = tf.reduce_mean(recon_loss)

        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(self.recon_loss)

        return
Exemplo n.º 21
0
    def build(self):
        self.x = tf.placeholder(name='x', dtype=tf.float32, shape=[None, input_dim])

        # Encode
        # x -> z_mean, z_sigma -> z                                                         # input 28*28= 784
        f1 = fc(self.x, 512, scope='enc_fc1', activation_fn=tf.nn.elu)                      # fully connected 512
        f2 = fc(f1, 384, scope='enc_fc2', activation_fn=tf.nn.elu)                          # fully connected 384
        f3 = fc(f2, 256, scope='enc_fc3', activation_fn=tf.nn.elu)                          # fully connected 256
        self.z_mu = fc(f3, self.n_z, scope='enc_fc4_mu', activation_fn=None)                # fully connected to mu (default 10)
        self.z_log_sigma_sq = fc(f3, self.n_z, scope='enc_fc4_sigma', activation_fn=None)   # fully connected to sigma (default 10)
        eps = tf.random_normal(shape=tf.shape(self.z_log_sigma_sq),                         # reparam trick
                               mean=0, stddev=1, dtype=tf.float32)
        self.z = self.z_mu + tf.sqrt(tf.exp(self.z_log_sigma_sq)) * eps                     # combine mu with sigma * normal

        # Decode
        # z -> x_hat
        g1 = fc(self.z, 256, scope='dec_fc1', activation_fn=tf.nn.elu)                      # fully connected from 2*n_z to 256
        g2 = fc(g1, 384, scope='dec_fc2', activation_fn=tf.nn.elu)                          # fully connected to 384
        g3 = fc(g2, 512, scope='dec_fc3', activation_fn=tf.nn.elu)                          # fully connected to 512
        self.x_hat = fc(g3, input_dim, scope='dec_fc4', activation_fn=tf.sigmoid)           # fully connected to 784

        # Loss
        # Reconstruction loss
        # Minimize the cross-entropy loss
        # H(x, x_hat) = -\Sigma x*log(x_hat) + (1-x)*log(1-x_hat)
        epsilon = 1e-10
        recon_loss = -tf.reduce_sum(
            self.x * tf.log(epsilon+self.x_hat) + (1-self.x) * tf.log(epsilon+1-self.x_hat),
            axis=1
        )
        self.recon_loss = tf.reduce_mean(recon_loss)

        # Latent loss
        # Kullback Leibler divergence: measure the difference between two distributions
        # Here we measure the divergence between the latent distribution and N(0, 1)
        latent_loss = -0.5 * tf.reduce_sum(
            1 + self.z_log_sigma_sq - tf.square(self.z_mu) - tf.exp(self.z_log_sigma_sq), axis=1)
        self.latent_loss = tf.reduce_mean(latent_loss)

        self.total_loss = tf.reduce_mean(recon_loss + latent_loss)
        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(self.total_loss)
        return
Exemplo n.º 22
0
 def createNetwork(self, X, iStep, renormalizeFactor):
     with tf.compat.v1.variable_scope("NetWorkUZ" + str(iStep),
                                      reuse=tf.compat.v1.AUTO_REUSE):
         fPrev = fc(X,
                    int(self.layerSize[0]),
                    scope='enc_fc1',
                    activation_fn=self.activation)
         for i in np.arange(len(self.layerSize) - 1):
             scopeName = 'enc_fc' + str(i + 2)
             f = fc(fPrev,
                    int(self.layerSize[i + 1]),
                    scope=scopeName,
                    activation_fn=self.activation)
             fPrev = f
         UZ = fc(fPrev, self.d + 1, scope='UZ', activation_fn=None)
         Gam = []
         for id in range(self.d):
             Gam.append(
                 tf.gradients(UZ[:, 1 + id], X)[0] / renormalizeFactor)
         Gam = tf.concat(Gam, axis=1)
     return UZ[:, 0], UZ[:,
                         1:], tf.reshape(Gam,
                                         [tf.shape(X)[0], self.d, self.d])
    def build(self):
        self.x = tf.placeholder(name='x', dtype=tf.float32, shape=[None, input_dim])
        
        # Encode
        # x -> z_mean, z_sigma -> z
        f1 = fc(self.x, self.hidden_layers[0], scope='vae_enc_fc1', activation_fn=tf.nn.relu)
        #f2 = fc(f1, 60, scope='enc_fc2', activation_fn=tf.nn.tanh)
        f3 = fc(f1, self.hidden_layers[1], scope='vae_enc_fc3', activation_fn=tf.nn.relu)
        #f4 = fc(f3, 20, scope='enc_fc4', activation_fn=tf.nn.relu)
        
        
        self.z_mu = fc(f3, self.hidden_layers[2], scope='vae_enc_fc5_mu', activation_fn=None)
        self.z_log_sigma_sq = fc(f3, self.hidden_layers[2], scope='vae_enc_fc5_sigma', activation_fn=None)
        eps = tf.random_normal(shape=tf.shape(self.z_log_sigma_sq),
                               mean=0, stddev=1, dtype=tf.float32)
        self.z = self.z_mu + tf.sqrt(tf.exp(self.z_log_sigma_sq)) * eps

        # Decode
        # z,y -> x_hat
        # g1 = fc(self.Z, 20, scope='dec_fc1', activation_fn=tf.nn.relu)
        g2 = fc(self.z,self.hidden_layers[1], scope='vae_dec_fc2', activation_fn=tf.nn.relu)
        g3 = fc(g2, self.hidden_layers[0], scope='vae_dec_fc3', activation_fn=tf.nn.relu)
        #g4 = fc(g3, 85, scope='dec_fc4', activation_fn=tf.nn.tanh)
       
        self.x_hat = fc(g3, input_dim, scope='vae_dec_fc5', activation_fn=tf.sigmoid)
        #self.x_res = self.x_hat[:,0:input_dim]

        # Loss
        # Reconstruction loss
        recon_loss = tf.reduce_mean(tf.square(self.x - self.x_hat),1) #(((self.x - y)**2).mean(1)).mean()

        self.recon_loss = tf.reduce_mean(recon_loss)

        # Latent loss
        # Kullback Leibler divergence: measure the difference between two distributions
        # Here we measure the divergence between the latent distribution and N(0, 1)
        
        #original
        latent_loss = -0.5 * tf.reduce_sum(
            1 + self.z_log_sigma_sq - tf.square(self.z_mu) - tf.exp(self.z_log_sigma_sq) , axis=1)
        
        
        self.latent_loss =  tf.reduce_mean(latent_loss)
        self.total_loss = tf.reduce_mean(recon_loss +latent_loss)
        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(self.total_loss)
        
        
       
        return
Exemplo n.º 24
0
def build_network(batch_size, inputenc, name="whole_network"):
    with tf.variable_scope(name):

        # Encode
        # x -> z_mean, z_sigma -> z
        f1 = fc(inputenc, 256, scope='enc_fc1', activation_fn=tf.nn.relu)
        f2 = fc(f1, 128, scope='enc_fc2', activation_fn=tf.nn.relu)
        f3 = fc(f2, 64, scope='enc_fc3', activation_fn=tf.nn.relu)
        z_mu = fc(f3, n_z, scope='enc_fc4_mu', activation_fn=None)
        z_log_sigma_sq = fc(f3, n_z, scope='enc_fc4_sigma', activation_fn=None)
        eps = tf.random_normal(shape=tf.shape(z_log_sigma_sq),
                               mean=0,
                               stddev=1,
                               dtype=tf.float32)
        z = z_mu + tf.sqrt(tf.exp(z_log_sigma_sq)) * eps

        g1 = fc(z, 64, scope='dec_fc1', activation_fn=tf.nn.relu)
        g2 = fc(g1, 128, scope='dec_fc2', activation_fn=tf.nn.relu)
        g3 = fc(g2, 256, scope='dec_fc3', activation_fn=tf.nn.relu)
        x_hat = fc(g3, input_dim, scope='dec_fc4', activation_fn=tf.sigmoid)

        return f2, g2, x_hat, z_mu, z_log_sigma_sq
Exemplo n.º 25
0
	def build(self):
		#input
		self.x = tf.placeholder(name='x', dtype=tf.float32, shape=[None, input_dim])
		
		#encoder
		#slim.fc(input, output_dim, scope, act_fn)
		f1= fc(self.x, 512, scope='enc_fc1', activation_fn = tf.nn.elu)
		f2= fc(f1, 384, scope='enc_fc2', activation_fn = tf.nn.elu)
		f3= fc(f2, 256, scope='enc_fc3', activation_fn = tf.nn.elu)

		self.z_mu = fc(f3,self.n_z, scope='enc_fc4_mu', activation_fn=None)
		#log(signma^2)
		self.z_log_sigma_sq = fc(f3,self.n_z, scope='enc_fc4_mu', activation_fn=None)

		#N(z_mu, z_sigma)
		eps = tf.random_normal(shape=tf.shape(self.z_log_sigma_sq),mean=0, stddev=1, dtype=tf.float32)

		self.z = self.z_mu + tf.sqrt(tf.exp(self.z_log_sigma_sq)) * eps
		#decoder
		g1 = fc(self.z, 256, scope='dec_fc1', activation_fn=tf.nn.elu)
		g2 = fc(g1, 384, scope='dec_fc2', activation_fn=tf.nn.elu)
		g3 = fc(g2, 512, scope='dec_fc3', activation_fn=tf.nn.elu)
		self.x_hat = fc(g3, input_dim, scope='dec_fc4', activation_fn=tf.sigmoid)


		#losses
		#reconstruction loss
		#x <--> x_hat
		#H(x,x_hat) = - \Sigma x * log(x_hat) + (1-x) * log(1-x_hat)
		epsilon = 1e-10
		recon_loss = -tf.reduce_sum(self.x * tf.log(self.x_hat + epsilon) + (1 - self.x)*tf.log(1- self.x_hat + epsilon) )

		#latest loss
		#KL divergence: measure the different between two distributions
		#the latest distribution and N(0,1)
		latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq - tf.square(self.z_mu) - tf.exp(self.z_log_sigma_sq),axis=1)
Exemplo n.º 26
0
    def build(self, input_dim):
        self.x = tf.placeholder(name='x',
                                dtype=tf.float32,
                                shape=[None, input_dim])
        Xnoise = self.x + self.noise_factor * tf.random_normal(tf.shape(
            self.x))
        Xnoise = tf.clip_by_value(Xnoise, 0., 1.)
        # Encode
        f1 = fc(Xnoise,
                self.hidden_layers[0],
                scope='dae_enc_fc1',
                activation_fn=tf.nn.relu)
        f2 = fc(f1,
                self.hidden_layers[1],
                scope='dae_enc_fc2',
                activation_fn=tf.nn.relu)
        self.z = fc(f2,
                    self.hidden_layers[2],
                    scope='dae_enc_fc3_mu',
                    activation_fn=None)

        # Decode
        g1 = fc(self.z,
                self.hidden_layers[1],
                scope='dae_dec_fc2',
                activation_fn=tf.nn.relu)
        g2 = fc(g1,
                self.hidden_layers[0],
                scope='dae_dec_fc1',
                activation_fn=tf.nn.relu)

        self.x_hat = fc(g2,
                        input_dim,
                        scope='dae_dec_xhat',
                        activation_fn=tf.nn.sigmoid)

        recon_loss = tf.reduce_mean(tf.square(self.x - self.x_hat), 1)
        self.recon_loss = tf.reduce_mean(recon_loss)
        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(self.recon_loss)

        return
Exemplo n.º 27
0
    def ae_network(self):
        """
        The main structure of autoencoder network
        :return:
        """
        input_dim = self.x.get_shape()
        self.x = tf.reshape(self.x,[input_dim[0],input_dim[1]])
        input_dim = self.x.get_shape().as_list()[1]
        print("input_dim:",input_dim)
        
        # Encode
        # x -> z
        f1 = fc(self.x, 256, scope = 'enc_fc1', activation_fn = tf.nn.relu)
        f3 = fc(f1, 64, scope = 'enc_fc3', activation_fn = tf.nn.relu)
        z = fc(f3, self.nz, scope = 'enc_fc4', activation_fn = tf.nn.relu)

        # Decode
        # z -> x_hat
        g1 = fc(z, 64, scope = 'dec_fc1', activation_fn = tf.nn.relu)
        g3 = fc(g1, 256, scope = 'dec_fc3', activation_fn = tf.nn.relu)
        self.x_hat = fc(g3, input_dim, scope = 'dec_fc4',
                   activation_fn = tf.sigmoid)
        print("build graph done!")
Exemplo n.º 28
0
    def build(self):
        self.x = tf.placeholder(name='x', dtype=tf.float32, shape=[None, input_dim])

        # Encode
        # x -> z_mean, z_sigma -> z
        f0 = fc(self.x, 4096, scope='enc_fc0', activation_fn=tf.nn.elu, weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))
        f1 = fc(f0,     2048, scope='enc_fc1', activation_fn=tf.nn.elu, weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))
        f2 = fc(f1,     1024, scope='enc_fc2', activation_fn=tf.nn.elu, weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))
        f3 = fc(f2,     512,  scope='enc_fc3', activation_fn=tf.nn.elu, weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))
        
        self.z_mu           = fc(f3, self.n_z, scope='enc_fc4_mu',    activation_fn=None)
        self.z_log_sigma_sq = fc(f3, self.n_z, scope='enc_fc4_sigma', activation_fn=None)
        eps = tf.random_normal(shape=tf.shape(self.z_log_sigma_sq), mean=0, stddev=1, dtype=tf.float32)
        self.z = self.z_mu + tf.sqrt(tf.exp(self.z_log_sigma_sq)) * eps

        # Decode
        # z -> x_hat
        g0 =         fc(self.z, 512 ,      scope='dec_fc0', activation_fn=tf.nn.elu , weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))
        g1 =         fc(g0,     1048,      scope='dec_fc1', activation_fn=tf.nn.elu , weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))
        g2 =         fc(g1,     2048,      scope='dec_fc2', activation_fn=tf.nn.elu , weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))
        g3 =         fc(g2,     4096,      scope='dec_fc3', activation_fn=tf.nn.elu , weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))
        self.x_hat = fc(g3,     input_dim, scope='dec_fc4', activation_fn=tf.sigmoid, weights_initializer=tf.truncated_normal_initializer(stddev=0.01),weights_regularizer=slim.l2_regularizer(0.05))

        # Loss
        # Reconstruction loss
        # Minimize the cross-entropy loss
        # H(x, x_hat) = -\Sigma x*log(x_hat) + (1-x)*log(1-x_hat)
        epsilon = 1e-10
        recon_loss = -tf.reduce_sum(self.x * tf.log(epsilon+self.x_hat) + (1-self.x) * tf.log(epsilon+1-self.x_hat), axis=1)
        self.recon_loss = tf.reduce_mean(recon_loss)

        # Latent loss
        # Kullback Leibler divergence: measure the difference between two distributions
        # Here we measure the divergence between the latent distribution and N(0, 1)
        latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq - tf.square(self.z_mu) - tf.exp(self.z_log_sigma_sq), axis=1)
        self.latent_loss = tf.reduce_mean(latent_loss)

        self.total_loss = tf.reduce_mean(recon_loss + latent_loss)
        self.train_op = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.total_loss)
        return
Exemplo n.º 29
0
    def build(self):
        self.x = tf.placeholder(name='x',
                                dtype=tf.float32,
                                shape=[None, self.vindim])

        # Encode
        # x -> z_mean, z_sigma -> z
        f0 = fc(self.x, 30000, scope='enc_fc0', activation_fn=tf.nn.relu)
        f1 = fc(f0, 15000, scope='enc_fc1', activation_fn=tf.nn.relu)
        f2 = fc(f1, 10000, scope='enc_fc2', activation_fn=tf.nn.relu)
        f3 = fc(f2, 2000, scope='enc_fc3', activation_fn=tf.nn.relu)
        #f3 = fc(f3, 500, scope='enc_fc3', activation_fn=tf.nn.elu)
        self.z_mu = fc(f3, self.n_z, scope='enc_fc4_mu', activation_fn=None)
        self.z_log_sigma_sq = fc(f3,
                                 self.n_z,
                                 scope='enc_fc4_sigma',
                                 activation_fn=None)
        eps = tf.random_normal(shape=tf.shape(self.z_log_sigma_sq),
                               mean=0,
                               stddev=1,
                               dtype=tf.float32)
        #zzz = self.z_mu + tf.sqrt(tf.exp(self.z_log_sigma_sq)) * eps
        #self.zzz = tf.Print(zzz,[zzz], message="my Z-values:")
        self.z = self.z_mu + tf.sqrt(tf.exp(self.z_log_sigma_sq)) * eps

        # Decode
        # z -> x_hat
        g1 = fc(self.z, 2000, scope='dec_fc1', activation_fn=tf.nn.relu)
        g2 = fc(g1, 10000, scope='dec_fc2', activation_fn=tf.nn.relu)
        g3 = fc(g2, 15000, scope='dec_fc3', activation_fn=tf.nn.relu)
        g4 = fc(g3, 30000, scope='dec_fc4', activation_fn=tf.nn.relu)
        self.x_hat = fc(g4,
                        self.vindim,
                        scope='dec_fc5',
                        activation_fn=tf.sigmoid)

        # Loss
        # Reconstruction loss
        # Minimize the cross-entropy loss
        # H(x, x_hat) = -\Sigma x*log(x_hat) + (1-x)*log(1-x_hat)
        epsilon = 1e-9
        recon_loss = -tf.reduce_sum(self.x * tf.log(epsilon + self.x_hat) +
                                    (1 - self.x) * tf.log(epsilon +
                                                          (1 - self.x_hat)),
                                    axis=1)
        #recon_loss = tf.reduce_sum((self.x_hat-self.x)**2,axis=1)

        #recon_loss = tf.nn.l2_loss(self.x_hat-self.x)
        self.recon_loss = tf.reduce_mean(recon_loss)

        # Latent loss
        # Kullback Leibler divergence: measure the difference between two distributions
        # Here we measure the divergence between the latent distribution and N(0, 1)
        latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq - tf.square(
            self.z_mu) - tf.exp(self.z_log_sigma_sq),
                                           axis=1)
        self.latent_loss = tf.reduce_mean(latent_loss)

        self.total_loss = tf.reduce_mean(latent_loss + recon_loss)
        self.train_op = tf.train.RMSPropOptimizer(
            learning_rate=self.learning_rate).minimize(self.total_loss)
        #self.train_op = tf.train.AdamOptimizer(
        #    learning_rate=self.learning_rate).minimize(self.total_loss)
        return
Exemplo n.º 30
0
    def build(self, input_tensor=None, loss_type='CE', use_conv=False, sphere_lat=True, crop=-1, alpha_r=3):
        self.input = tf.placeholder(
            dtype=tf.float32, shape=[None, self.h, self.w, 1], name="input_")
        self.label = tf.placeholder(dtype=tf.int32, shape=[None,], name="label_")

        print(self.input.name)
        if crop > 0:
            crops = [tf.random_crop(self.input, size=(self.batch_size, 16,72,1), 
                                seed=None, name="crop_{0:d}".format(ci)) for ci in range(crop)]
            self.input_ = tf.concat(crops, axis=0, name="input_crop")
            self.x = tf.layers.flatten(self.input_, name='x')
            self.input_dim = 16*72
        else:
            
            self.x = tf.layers.flatten(self.input, name='x')
        # Encode
        # x -> z_mean, z_sigma -> z
        for var in tf.global_variables():
            print(var.name, var.get_shape())
        if use_conv:
            if crop > 0:
                f1 = conv2d(self.input_, num_outputs=32, kernel_size=[3,3])
            else:
                f1 = conv2d(self.input, num_outputs=32, kernel_size=[3,3])
            m1 = max_pool2d(f1, kernel_size=[1,2], stride=[1,2])
            f2 = conv2d(m1, num_outputs=64, kernel_size=[3,3])
            m2 = max_pool2d(f2, kernel_size=2, stride=2)
            f3 = conv2d(m2, num_outputs=128, kernel_size=[3,3])
            m3 = max_pool2d(f3, kernel_size=[1,2], stride=[1,2])
            f4 = conv2d(m3, num_outputs=256, kernel_size=[3,3])
            m4 = max_pool2d(f4, kernel_size=2, stride=2)
            f5 = conv2d(m4, num_outputs=128, kernel_size=[3,3])
            m5 = max_pool2d(f5, kernel_size=2, stride=2)
            f6 = conv2d(m5, num_outputs=256, kernel_size=[3,3])
            #m6 = max_pool2d(f6, kernel_size=2, stride=2)
            #f7 = conv2d(m5, num_outputs=256, kernel_size=[3,3])
            ff = tf.reduce_mean(f6, axis=(1,2))
        else:
            f1 = fc(self.x, 512, scope='enc_fc1', activation_fn=tf.nn.relu)
            f2 = fc(f1, 256, scope='enc_fc2', activation_fn=tf.nn.relu)
            ff = fc(f2, 128, scope='enc_fc3', activation_fn=tf.nn.relu)
        z = fc(ff, self.n_z, scope='enc_fc4', activation_fn=None)
        if sphere_lat:
            norm = tf.sqrt(tf.reduce_sum(z*z,1, keepdims=True))
            self.z = tf.div(z, norm, name='enc_norm')
        else:
            self.z = z
        print(self.z.name)
        if crop > 0:
            z1 = tf.reshape(self.z, (1, crop, self.batch_size, -1))
            z2 = tf.reshape(self.z, (crop, 1, self.batch_size, -1))
            zloss = tf.reduce_mean(1-tf.reduce_sum(z1*z2, axis=-1), name='zloss') * 0.1
        else:
            zloss, pos_frac = batch_all_triplet_loss(self.label, self.z, margin=0.1, squared=False) 
            #zloss = zloss * 0.
            #tf.constant(0, dtype=tf.float32)
            
        # Decode
        # z -> x_hat
        g1 = fc(self.z, 128, scope='dec_fc1', activation_fn=tf.nn.relu)
        g2 = fc(g1, 256, scope='dec_fc2', activation_fn=tf.nn.relu)
        g3 = fc(g2, 512, scope='dec_fc3', activation_fn=tf.nn.relu)
        self.x_hat = fc(g3, self.input_dim, scope='dec_fc4', 
                        activation_fn=tf.sigmoid)

        # Loss
        # Reconstruction loss
        # Minimize the cross-entropy loss
        # H(x, x_hat) = -\Sigma x*log(x_hat) + (1-x)*log(1-x_hat)
        epsilon = 1e-10
        if loss_type == 'CE':
            self.recon_loss = -tf.reduce_sum(
                self.x * tf.log(epsilon+self.x_hat) + 
                (1-self.x) * tf.log(epsilon+1-self.x_hat), 
                axis=1
            )  * alpha_r
        elif loss_type == 'l2':
            self.recon_loss = tf.sqrt(tf.reduce_mean(
                tf.square(self.x -self.x_hat),
                axis=1
            )) * alpha_r
        elif loss_type == 'l1':
            self.recon_loss = tf.reduce_mean(
                tf.abs(self.x -self.x_hat),
                axis=1
            ) * alpha_r
#         self.target_loss = -tf.reduce_sum(
#             self.x * tf.log(epsilon+self.x) + 
#             (1-self.x) * tf.log(epsilon+1-self.x), 
#             axis=1
#         )
        recon_loss = tf.reduce_mean(self.recon_loss) 

        self.train_op = tf.train.AdamOptimizer(
            learning_rate=self.learning_rate).minimize(recon_loss+zloss)
        
        self.losses = {
            'recon_loss': recon_loss,
            'zloss': zloss
        }
        return