def run_training():
    """Train MNIST for a number of steps."""

    # Tell TensorFlow that the model will be built into the default Graph.
    with tf.Graph().as_default():
        # Input images and labels.
        images, labels = inputs(train=True, batch_size=FLAGS.batch_size, num_epochs=FLAGS.num_epochs)

        # Build a Graph that computes predictions from the inference model.
        logits = mnist.inference(images, FLAGS.hidden1, FLAGS.hidden2)

        # Add to the Graph the loss calculation.
        loss = mnist.loss(logits, labels)

        # Add to the Graph operations that train the model.
        train_op = mnist.training(loss, FLAGS.learning_rate)

        # The op for initializing the variables.
        init_op = tf.initialize_all_variables()

        # Create a session for running operations in the Graph.
        sess = tf.Session()

        # Initialize the variables (the trained variables and the
        # epoch counter).
        sess.run(init_op)

        # Start input enqueue threads.
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        try:
            step = 0
            while not coord.should_stop():
                start_time = time.time()

                # Run one step of the model.  The return values are
                # the activations from the `train_op` (which is
                # discarded) and the `loss` op.  To inspect the values
                # of your ops or variables, you may include them in
                # the list passed to sess.run() and the value tensors
                # will be returned in the tuple from the call.
                _, loss_value = sess.run([train_op, loss])

                duration = time.time() - start_time

                # Print an overview fairly often.
                if step % 100 == 0:
                    print("Step %d: loss = %.2f (%.3f sec)" % (step, loss_value, duration))
                step += 1
        except tf.errors.OutOfRangeError:
            print("Done training for %d epochs, %d steps." % (FLAGS.num_epochs, step))
        finally:
            # When done, ask the threads to stop.
            coord.request_stop()

        # Wait for threads to finish.
        coord.join(threads)
        sess.close()
Exemplo n.º 2
0
def run_training():
    """Train MNIST for a number of epochs."""
    # Get the sets of images and labels for training, validation, and
    # test on MNIST.
    data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)

    # Tell TensorFlow that the model will be built into the default Graph.
    with tf.Graph().as_default():
        with tf.name_scope('input'):
            # Input data
            input_images = tf.constant(data_sets.train.images)
            input_labels = tf.constant(data_sets.train.labels)

            image, label = tf.train.slice_input_producer(
                [input_images, input_labels], num_epochs=FLAGS.num_epochs)
            label = tf.cast(label, tf.int32)
            images, labels = tf.train.batch([image, label],
                                            batch_size=FLAGS.batch_size)

        # Build a Graph that computes predictions from the inference model.
        logits = mnist.inference(images, FLAGS.hidden1, FLAGS.hidden2)

        # Add to the Graph the Ops for loss calculation.
        loss = mnist.loss(logits, labels)

        # Add to the Graph the Ops that calculate and apply gradients.
        train_op = mnist.training(loss, FLAGS.learning_rate)

        # Add the Op to compare the logits to the labels during evaluation.
        eval_correct = mnist.evaluation(logits, labels)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Create a saver for writing training checkpoints.
        saver = tf.train.Saver()

        # Create the op for initializing variables.
        init_op = tf.initialize_all_variables()

        # Create a session for running Ops on the Graph.
        sess = tf.Session()

        # Run the Op to initialize the variables.
        sess.run(init_op)

        # Instantiate a SummaryWriter to output summaries and the Graph.
        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                                graph_def=sess.graph_def)

        # Start input enqueue threads.
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        # And then after everything is built, start the training loop.
        try:
            step = 0
            while not coord.should_stop():
                start_time = time.time()

                # Run one step of the model.
                _, loss_value = sess.run([train_op, loss])

                duration = time.time() - start_time

                # Write the summaries and print an overview fairly often.
                if step % 100 == 0:
                    # Print status to stdout.
                    print 'Step %d: loss = %.2f (%.3f sec)' % (
                        step, loss_value, duration)
                    # Update the events file.
                    summary_str = sess.run(summary_op)
                    summary_writer.add_summary(summary_str, step)
                    step += 1

                # Save a checkpoint periodically.
                if (step + 1) % 1000 == 0:
                    print 'Saving'
                    saver.save(sess, FLAGS.train_dir, global_step=step)

                step += 1
        except tf.errors.OutOfRangeError:
            print 'Saving'
            saver.save(sess, FLAGS.train_dir, global_step=step)
            print 'Done training for %d epochs, %d steps.' % (FLAGS.num_epochs,
                                                              step)
        finally:
            # When done, ask the threads to stop.
            coord.request_stop()

        # Wait for threads to finish.
        coord.join(threads)
        sess.close()
Exemplo n.º 3
0
def run_training():
  """Train MNIST for a number of steps."""

  # Tell TensorFlow that the model will be built into the default Graph.
  with tf.Graph().as_default():
    # Input images and labels.
    images, labels = inputs(train=True, batch_size=FLAGS.batch_size,
                            num_epochs=FLAGS.num_epochs)

    # Build a Graph that computes predictions from the inference model.
    logits = mnist.inference(images,
                             FLAGS.hidden1,
                             FLAGS.hidden2)

    # Add to the Graph the loss calculation.
    loss = mnist.loss(logits, labels)

    # Add to the Graph operations that train the model.
    train_op = mnist.training(loss, FLAGS.learning_rate)

    # The op for initializing the variables.
    init_op = tf.initialize_all_variables()

    # Create a session for running operations in the Graph.
    sess = tf.Session()

    # Initialize the variables (the trained variables and the
    # epoch counter).
    sess.run(init_op)

    # Start input enqueue threads.
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
      step = 0
      while not coord.should_stop():
        start_time = time.time()

        # Run one step of the model.  The return values are
        # the activations from the `train_op` (which is
        # discarded) and the `loss` op.  To inspect the values
        # of your ops or variables, you may include them in
        # the list passed to sess.run() and the value tensors
        # will be returned in the tuple from the call.
        _, loss_value = sess.run([train_op, loss])

        duration = time.time() - start_time

        # Print an overview fairly often.
        if step % 100 == 0:
          print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value,
                                                     duration))
        step += 1
    except tf.errors.OutOfRangeError:
      print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
    finally:
      # When done, ask the threads to stop.
      coord.request_stop()

    # Wait for threads to finish.
    coord.join(threads)
    sess.close()
Exemplo n.º 4
0
def run_training():
  """Train MNIST for a number of steps."""
  # Get the sets of images and labels for training, validation, and
  # test on MNIST.
  data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)

  # Tell TensorFlow that the model will be built into the default Graph.
  with tf.Graph().as_default():
    # Generate placeholders for the images and labels.
    images_placeholder, labels_placeholder = placeholder_inputs(
        FLAGS.batch_size)

    # Build a Graph that computes predictions from the inference model.
    logits = mnist.inference(images_placeholder,
                             FLAGS.hidden1,
                             FLAGS.hidden2)

    # Add to the Graph the Ops for loss calculation.
    loss = mnist.loss(logits, labels_placeholder)

    # Add to the Graph the Ops that calculate and apply gradients.
    train_op = mnist.training(loss, FLAGS.learning_rate)

    # Add the Op to compare the logits to the labels during evaluation.
    eval_correct = mnist.evaluation(logits, labels_placeholder)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    # Create a saver for writing training checkpoints.
    saver = tf.train.Saver()

    # Create a session for running Ops on the Graph.
    sess = tf.Session()

    # Run the Op to initialize the variables.
    init = tf.initialize_all_variables()
    sess.run(init)

    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                            graph_def=sess.graph_def)

    # And then after everything is built, start the training loop.
    for step in xrange(FLAGS.max_steps):
      start_time = time.time()

      # Fill a feed dictionary with the actual set of images and labels
      # for this particular training step.
      feed_dict = fill_feed_dict(data_sets.train,
                                 images_placeholder,
                                 labels_placeholder)

      # Run one step of the model.  The return values are the activations
      # from the `train_op` (which is discarded) and the `loss` Op.  To
      # inspect the values of your Ops or variables, you may include them
      # in the list passed to sess.run() and the value tensors will be
      # returned in the tuple from the call.
      _, loss_value = sess.run([train_op, loss],
                               feed_dict=feed_dict)

      duration = time.time() - start_time

      # Write the summaries and print an overview fairly often.
      if step % 100 == 0:
        # Print status to stdout.
        print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
        # Update the events file.
        summary_str = sess.run(summary_op, feed_dict=feed_dict)
        summary_writer.add_summary(summary_str, step)

      # Save a checkpoint and evaluate the model periodically.
      if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        saver.save(sess, FLAGS.train_dir, global_step=step)
        # Evaluate against the training set.
        print('Training Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.train)
        # Evaluate against the validation set.
        print('Validation Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.validation)
        # Evaluate against the test set.
        print('Test Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.test)
Exemplo n.º 5
0
def run_training():
  """Train MNIST for a number of steps."""
  # Get the sets of images and labels for training, validation, and
  # test on MNIST.
  data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)
  # Tell TensorFlow that the model will be built into the default Graph.
  with tf.Graph().as_default():
    # Generate placeholders for the images and labels.
    images_placeholder, labels_placeholder = placeholder_inputs(
        FLAGS.batch_size)
    # Build a Graph that computes predictions from the inference model.
    logits = mnist.inference(images_placeholder,
                             FLAGS.hidden1,
                             FLAGS.hidden2)
    # Add to the Graph the Ops for loss calculation.
    loss = mnist.loss(logits, labels_placeholder)
    # Add to the Graph the Ops that calculate and apply gradients.
    train_op = mnist.training(loss, FLAGS.learning_rate)
    # Add the Op to compare the logits to the labels during evaluation.
    eval_correct = mnist.evaluation(logits, labels_placeholder)
    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()
    # Create a saver for writing training checkpoints.
    saver = tf.train.Saver()
    # Create a session for running Ops on the Graph.
    sess = tf.Session()
    # Run the Op to initialize the variables.
    init = tf.initialize_all_variables()
    sess.run(init)
    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                            graph_def=sess.graph_def)
    # And then after everything is built, start the training loop.
    for step in xrange(FLAGS.max_steps):
      start_time = time.time()
      # Fill a feed dictionary with the actual set of images and labels
      # for this particular training step.
      feed_dict = fill_feed_dict(data_sets.train,
                                 images_placeholder,
                                 labels_placeholder)
      # Run one step of the model.  The return values are the activations
      # from the `train_op` (which is discarded) and the `loss` Op.  To
      # inspect the values of your Ops or variables, you may include them
      # in the list passed to sess.run() and the value tensors will be
      # returned in the tuple from the call.
      _, loss_value = sess.run([train_op, loss],
                               feed_dict=feed_dict)
      duration = time.time() - start_time
      # Write the summaries and print an overview fairly often.
      if step % 100 == 0:
        # Print status to stdout.
        print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
        # Update the events file.
        summary_str = sess.run(summary_op, feed_dict=feed_dict)
        summary_writer.add_summary(summary_str, step)
      # Save a checkpoint and evaluate the model periodically.
      if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        saver.save(sess, FLAGS.train_dir, global_step=step)
        # Evaluate against the training set.
        print('Training Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.train)
        # Evaluate against the validation set.
        print('Validation Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.validation)
        # Evaluate against the test set.
        print('Test Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.test)
def run_training():
  """Train MNIST for a number of epochs."""
  # Get the sets of images and labels for training, validation, and
  # test on MNIST.
  data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)

  # Tell TensorFlow that the model will be built into the default Graph.
  with tf.Graph().as_default():
    with tf.name_scope('input'):
      # Input data
      input_images = tf.constant(data_sets.train.images)
      input_labels = tf.constant(data_sets.train.labels)

      image, label = tf.train.slice_input_producer(
          [input_images, input_labels], num_epochs=FLAGS.num_epochs)
      label = tf.cast(label, tf.int32)
      images, labels = tf.train.batch(
          [image, label], batch_size=FLAGS.batch_size)

    # Build a Graph that computes predictions from the inference model.
    logits = mnist.inference(images, FLAGS.hidden1, FLAGS.hidden2)

    # Add to the Graph the Ops for loss calculation.
    loss = mnist.loss(logits, labels)

    # Add to the Graph the Ops that calculate and apply gradients.
    train_op = mnist.training(loss, FLAGS.learning_rate)

    # Add the Op to compare the logits to the labels during evaluation.
    eval_correct = mnist.evaluation(logits, labels)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    # Create a saver for writing training checkpoints.
    saver = tf.train.Saver()

    # Create the op for initializing variables.
    init_op = tf.initialize_all_variables()

    # Create a session for running Ops on the Graph.
    sess = tf.Session()

    # Run the Op to initialize the variables.
    sess.run(init_op)

    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                            graph_def=sess.graph_def)

    # Start input enqueue threads.
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # And then after everything is built, start the training loop.
    try:
      step = 0
      while not coord.should_stop():
        start_time = time.time()

        # Run one step of the model.
        _, loss_value = sess.run([train_op, loss])

        duration = time.time() - start_time

        # Write the summaries and print an overview fairly often.
        if step % 100 == 0:
          # Print status to stdout.
          print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value,
                                                     duration))
          # Update the events file.
          summary_str = sess.run(summary_op)
          summary_writer.add_summary(summary_str, step)
          step += 1

        # Save a checkpoint periodically.
        if (step + 1) % 1000 == 0:
          print('Saving')
          saver.save(sess, FLAGS.train_dir, global_step=step)

        step += 1
    except tf.errors.OutOfRangeError:
      print('Saving')
      saver.save(sess, FLAGS.train_dir, global_step=step)
      print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
    finally:
      # When done, ask the threads to stop.
      coord.request_stop()

    # Wait for threads to finish.
    coord.join(threads)
    sess.close()