Exemplo n.º 1
0
def test_make_mvn_dist_fn():
    from indl.dists import make_mvn_dist_fn

    input_dim = 4
    dist_dim = 3
    batch_size = 8

    # Test with placeholder
    inputs = tfkl.Input(shape=(input_dim, ))
    # First the callable
    make_dist_fn, dist_params = make_mvn_dist_fn(inputs,
                                                 dist_dim,
                                                 shift_std=0.1)
    assert hasattr(make_dist_fn, '__call__')
    # tensorflow.python.keras.engine.keras_tensor.KerasTensor
    # assert isinstance(dist_params[0], tf.Tensor)
    # assert isinstance(dist_params[1], tf.Tensor)
    assert K.is_keras_tensor(dist_params[0])
    assert K.is_keras_tensor(dist_params[1])
    test_dist = make_dist_fn((dist_params[0], dist_params[1]))
    assert isinstance(test_dist, tfd.Distribution)
    # Then test using it to make a distribution
    _dist_layer = tfpl.DistributionLambda(
        make_distribution_fn=make_dist_fn,
        # convert_to_tensor_fn=lambda s: s.sample(n_samples),
    )
    q_dist = _dist_layer(dist_params)
    _run_assertions_on_qdist(q_dist, inputs, input_dim, dist_dim, batch_size)
Exemplo n.º 2
0
    def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
        inputs, initial_state, constants = self._standardize_args(
            inputs, initial_state, constants, self._num_constants)

        if initial_state is None and constants is None:
            return super(ExternalAttentionRNNWrapper,
                         self).__call__(inputs, **kwargs)

        # If any of `initial_state` or `constants` are specified and are Keras
        # tensors, then add them to the inputs and temporarily modify the
        # input_spec to include them.

        additional_inputs = []
        additional_specs = []
        if initial_state is not None:
            kwargs['initial_state'] = initial_state
            additional_inputs += initial_state
            self.state_spec = [
                InputSpec(shape=K.int_shape(state)) for state in initial_state
            ]
            additional_specs += self.state_spec
        if constants is not None:
            kwargs['constants'] = constants
            additional_inputs += constants
            self.constants_spec = [
                InputSpec(shape=K.int_shape(constant))
                for constant in constants
            ]
            self._num_constants = len(constants)
            additional_specs += self.constants_spec
        # at this point additional_inputs cannot be empty
        is_keras_tensor = K.is_keras_tensor(additional_inputs[0])
        for tensor in additional_inputs:
            if K.is_keras_tensor(tensor) != is_keras_tensor:
                raise ValueError(
                    'The initial state or constants of an ExternalAttentionRNNWrapper'
                    ' layer cannot be specified with a mix of'
                    ' Keras tensors and non-Keras tensors'
                    ' (a "Keras tensor" is a tensor that was'
                    ' returned by a Keras layer, or by `Input`)')

        if is_keras_tensor:
            # Compute the full input spec, including state and constants
            full_input = inputs + additional_inputs
            full_input_spec = self.input_spec + additional_specs
            # Perform the call with temporarily replaced input_spec
            original_input_spec = self.input_spec
            self.input_spec = full_input_spec
            output = super(ExternalAttentionRNNWrapper,
                           self).__call__(full_input, **kwargs)
            self.input_spec = self.input_spec[:len(original_input_spec)]
            return output
        else:
            return super(ExternalAttentionRNNWrapper,
                         self).__call__(inputs, **kwargs)
Exemplo n.º 3
0
def test_make_encd_variational(n_times=None):
    from indl.model.beta_vae import make_encd_variational

    params = {
        'encd_rnn2_units': 14,  # For constructing input
        'zd_size': 4,
        'qzd_init_std': 0.1,
        'qzd_off_diag': False,
        'q_samples': 1
    }
    inputs = tf.keras.Input(shape=(n_times, params['encd_rnn2_units']))
    qzd = make_encd_variational(params, inputs)
    assert K.is_keras_tensor(
        qzd)  # isinstance(qzd, tfd.MultivariateNormalDiag)

    z_var = tf.keras.Model(inputs=inputs, outputs=qzd)
    batch_size = 16
    timesteps = n_times or 20
    enc_z = tf.random.uniform(
        (batch_size, timesteps, params['encd_rnn2_units']))
    dummy_qzd = z_var(enc_z)
    assert isinstance(dummy_qzd, tfd.MultivariateNormalDiag)
    dummy_sample = dummy_qzd.sample(params['q_samples'])
    assert dummy_sample.shape.as_list() == [
        params['q_samples'], batch_size, timesteps, params['zd_size']
    ]
Exemplo n.º 4
0
    def __init__(self, include_top=True, input_tensor=None, input_shape=None, pooling=None, classes=8631):
        super(ResNet50Model, self).__init__()
        self.include_top = include_top

        input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=32, data_format=K.image_data_format(),
                                          require_flatten=include_top)

        if input_tensor is None:
            img_input = Input(shape=input_shape)
        else:
            if not K.is_keras_tensor(input_tensor):
                img_input = Input(tensor=input_tensor, shape=input_shape)
            else:
                img_input = input_tensor

        x = ResNet50Component(include_top=include_top)(img_input)
        # x = AveragePooling2D((7, 7), name='avg_pool')(x)

        x = Flatten()(x)

        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

        if input_tensor is not None:
            inputs = get_source_inputs(input_tensor)
        else:
            inputs = img_input

        super(ResNet50Model, self).__init__(inputs, x, name='vggface_resnet50')
Exemplo n.º 5
0
def nn_base(input_tensor=None, input_shape = (None, None, 3), trainable=False):

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3
    x = ZeroPadding2D((3, 3))(img_input)

    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', trainable = trainable)(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPool2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), trainable = trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', trainable = trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', trainable = trainable)

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', trainable = trainable)

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f', trainable = trainable)

    return x
Exemplo n.º 6
0
def test_make_encs_variational():
    from indl.model.beta_vae import make_encs_variational
    params = {
        'encs_rnn_units':
        12,  # Only needed to emulate previous layer's outputs
        'dropout_rate': 0.01,
        'zs_size': 10,
        'qzs_off_diag': False,
        'qzs_init_std': 0.1,
        'q_samples': 2
    }
    encoded_s = tf.keras.Input(shape=(params['encs_rnn_units'], ))
    qzs = make_encs_variational(params, encoded_s)
    # make_f_variational is a lightweight wrapper around `make_variational` which has its own tests.
    # There isn't much left to test here so let's just assert its type.
    assert K.is_keras_tensor(
        qzs)  # isinstance(qzs, tfd.MultivariateNormalDiag)

    make_encs_var = tf.keras.Model(inputs=encoded_s,
                                   outputs=qzs,
                                   name="make_encs_var_model")
    batch_size = 16
    encoded_s = tf.random.uniform((batch_size, params['encs_rnn_units']))
    dummy_qzs = make_encs_var(encoded_s)
    assert isinstance(dummy_qzs, tfd.MultivariateNormalDiag)
    dummy_sample = dummy_qzs.sample(params['q_samples'])
    assert dummy_sample.shape.as_list() == [
        params['q_samples'], batch_size, params['zs_size']
    ]
Exemplo n.º 7
0
def nn_base(input_tensor=None, trainable=False):

    # Determine proper input shape
    if K.image_data_format() == 'channels_first':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)

    x = Convolution2D(64, (7, 7), strides=(
        2, 2), name='conv1', trainable=trainable)(x)
    x = FixedBatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a',
                   strides=(1, 1), trainable=trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2,
                       block='b', trainable=trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2,
                       block='c', trainable=trainable)

    x = conv_block(x, 3, [128, 128, 512], stage=3,
                   block='a', trainable=trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3,
                       block='b', trainable=trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3,
                       block='c', trainable=trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3,
                       block='d', trainable=trainable)

    x = conv_block(x, 3, [256, 256, 1024], stage=4,
                   block='a', trainable=trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4,
                       block='b', trainable=trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4,
                       block='c', trainable=trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4,
                       block='d', trainable=trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4,
                       block='e', trainable=trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4,
                       block='f', trainable=trainable)

    return x
def vgg_network(input_tensor=None):
    """
    Generating VGG16 network.

    :param input_tensor: get the uses tensorflow.

    :return: VGG16 network.
    """

    # Determine proper input shape
    if K.image_data_format() == 'channels_first':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    # Block 1
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
    x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
    # x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    return x
Exemplo n.º 9
0
def VGG16_wBN(input_tensor=None, input_shape=None, classes=1000, conv_dropout=0.1, dropout=0.3, activation='relu'):
    """Instantiates the VGG16 architecture with Batch Normalization
    # Arguments
        input_tensor: Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model.
        input_shape: shape tuple
        classes: optional number of classes to classify images, 1000 as per the imagenet
    # Returns
        A Keras model instance.
    """
    img_input = Input(shape=input_shape) if input_tensor is None else (
        Input(tensor=input_tensor, shape=input_shape) if not K.is_keras_tensor(input_tensor) else input_tensor
    )

    # Block 1
    x = conv_block(32, dropout=conv_dropout, activation=activation, block=1, layer=1)(img_input)
    x = conv_block(32, dropout=conv_dropout, activation=activation, block=1, layer=2)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = conv_block(64, dropout=conv_dropout, activation=activation, block=2, layer=1)(x)
    x = conv_block(64, dropout=conv_dropout, activation=activation, block=2, layer=2)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = conv_block(128, dropout=conv_dropout, activation=activation, block=3, layer=1)(x)
    x = conv_block(128, dropout=conv_dropout, activation=activation, block=3, layer=2)(x)
    x = conv_block(128, dropout=conv_dropout, activation=activation, block=3, layer=3)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = conv_block(256, dropout=conv_dropout, activation=activation, block=4, layer=1)(x)
    x = conv_block(256, dropout=conv_dropout, activation=activation, block=4, layer=2)(x)
    x = conv_block(256, dropout=conv_dropout, activation=activation, block=4, layer=3)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = conv_block(256, dropout=conv_dropout, activation=activation, block=5, layer=1)(x)
    x = conv_block(256, dropout=conv_dropout, activation=activation, block=5, layer=2)(x)
    x = conv_block(256, dropout=conv_dropout, activation=activation, block=5, layer=3)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    # Flatten
    x = GlobalAveragePooling2D()(x)

    # FC Layers
    x = dense_block(512, dropout=dropout, activation=activation, name='fc1')(x)
    x = dense_block(512, dropout=dropout, activation=activation, name='fc2')(x)
    
    # Classification block    
    x = Dense(classes, activation='softmax', name='predictions')(x)

    # Ensure that the model takes into account any potential predecessors of `input_tensor`.
    inputs = get_source_inputs(input_tensor) if input_tensor is not None else img_input

    # Create model.
    return Model(inputs, x, name='vgg16_bn')
Exemplo n.º 10
0
def model_mobilenet(input_tensor=None,
                    input_shape=None,
                    classes=1000,
                    alpha=1.0,
                    depth_multiplier=1,
                    dropout=1e-3,
                    include_top=True,
                    pooling=None,
                    weights=None,
                    data_format="channels_last"):
    input_shape = deduce_input_shape(input_shape,
                                     require_flatten=include_top,
                                     weights=weights,
                                     data_format=data_format)
    if data_format == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]
    if input_tensor is not None:
        if not backend.is_keras_tensor(input_tensor):
            raise ValueError("input_tensor must be a Keras layer tensor.")
        img_input = input_tensor
    else:
        img_input = layers.Input(shape=input_shape)
    # construct the convolutional network
    net = cnn_mobilenet(img_input,
                        alpha=alpha,
                        depth_multiplier=depth_multiplier,
                        data_format=data_format)
    if include_top:
        # add the classification network
        net = top_block(net,
                        classes=classes,
                        alpha=alpha,
                        dropout=dropout,
                        data_format=data_format)
    else:
        # add global pooling if required
        net = pool_block(net, pooling, data_format)
    if input_tensor is not None:
        inputs = utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model_name = 'mobilenet_%0.2f_%s' % (alpha, rows)
    model = models.Model(inputs, net, name=model_name)
    if weights == 'imagenet':
        weight_path = get_weights_path(alpha, rows, include_top)
        model.load_weights(weight_path)
    elif weights is not None:
        model.load_weights(weights)
    return model
def shuffle_net(input_tensor,
                scale_factor=1,
                pooling='avg',
                input_shape=(224, 224, 3),
                groups=3,
                botteleneck_ratio=0.25):
    out_dim_stage_two = {1: 144, 2: 200, 3: 240, 4: 272, 8: 384}
    num_shuffle_units = [3, 7, 3]

    if pooling not in ['max', 'avg']:
        raise ValueError('Invalid value for pooling')

    # calculate output channels for each stage
    exp = np.insert(np.arange(0, len(num_shuffle_units)), 0, 0)
    out_channels_in_stage = 2**exp
    out_channels_in_stage *= out_dim_stage_two[groups]
    out_channels_in_stage[0] = 24  # fist stage has always 24 output channels
    out_channels_in_stage *= scale_factor
    out_channels_in_stage = out_channels_in_stage.astype(int)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if K.is_keras_tensor(input_tensor):
            img_input = input_tensor
        else:

            img_input = layers.Input(tensor=input_tensor, shape=input_shape)

    x = layers.Conv2D(filters=out_channels_in_stage[0],
                      kernel_size=(3, 3),
                      padding='same',
                      use_bias=False,
                      strides=(2, 2),
                      activation='relu',
                      name='conv1')(img_input)
    x = layers.MaxPooling2D(pool_size=(3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='max_pool1')(x)

    # create stages containing shuffle-net units beginning at stage 2
    for stage in range(len(num_shuffle_units)):
        repeat = num_shuffle_units[stage]
        x = _block(x,
                   out_channels_in_stage,
                   repeat=repeat,
                   bottleneck_ratio=botteleneck_ratio,
                   groups=groups,
                   stage=stage + 2)

    return x
def DenseNet(blocks,
             input_tensor=None,
             input_shape=None,
             pooling=None,
             activation=lambda: layers.Activation('relu')):

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
    x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
    x = layers.BatchNormalization(axis=bn_axis,
                                  epsilon=1.001e-5,
                                  name='conv1/bn')(x)
    # x = layers.Activation(activation, name='conv1/activation')(x)
    x = activation()(x)
    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
    x = layers.MaxPooling2D(3, strides=2, name='pool1')(x)

    x = dense_block(x, blocks[0], name='conv2', activation=activation)
    x = transition_block(x, 0.5, name='pool2', activation=activation)
    x = dense_block(x, blocks[1], name='conv3', activation=activation)
    x = transition_block(x, 0.5, name='pool3', activation=activation)
    x = dense_block(x, blocks[2], name='conv4', activation=activation)
    x = transition_block(x, 0.5, name='pool4', activation=activation)
    x = dense_block(x, blocks[3], name='conv5', activation=activation)

    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
    # x = layers.Activation(activation, name='activation')(x)
    x = activation()(x)

    if pooling == 'avg':
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    elif pooling == 'max':
        x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    return inputs, x
Exemplo n.º 13
0
def nn_base(input_tensor=None, trainable=False):


    # Determine proper input shape
    if K.image_dim_ordering() == 'th':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_dim_ordering() == 'tf':
        bn_axis = 3
    else:
        bn_axis = 1

    # Block 1
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
    x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
    # x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    return x
Exemplo n.º 14
0
def _run_assertions_on_qdist(q_dist, inputs, input_dim, dist_dim, batch_size):
    # assert isinstance(q_dist, (tfd.MultivariateNormalDiag, tfd.MultivariateNormalTriL))
    assert K.is_keras_tensor(q_dist)

    # Test in a model with a data tensor
    model = tf.keras.Model(inputs=inputs, outputs=q_dist)
    dummy_inputs = tf.random.uniform((batch_size, input_dim))
    dummy_q = model(dummy_inputs)
    assert isinstance(dummy_q,
                      (tfd.MultivariateNormalDiag, tfd.MultivariateNormalTriL))
    assert dummy_q.stddev().shape.as_list() == [batch_size, dist_dim]
    assert np.all(dummy_q.stddev().numpy() > 0)
    assert dummy_q.sample().shape.as_list() == [batch_size, dist_dim]
    assert ~np.any(np.isnan(dummy_q.sample().numpy()))
    # Implied convert_to_tensor != mean
    assert tf.not_equal(tf.add(dummy_q, 0), dummy_q.mean()).numpy().any()
Exemplo n.º 15
0
def hilbert(x):
    '''
    Implements the hilbert transform.
    Args:
        x: The input sequence. A tensor of shape (None, channel, sample, filter)
    Returns:
        xc: A complex sequence of the same shape.
    '''
    if len(x.shape) != 4:
        raise NotImplementedError
    if x.dtype != 'float32':
        x = tf.cast(x, dtype=tf.float32)

    if K.is_keras_tensor(x):
        if K.image_data_format() == 'channels_first':
            filter_num = K.int_shape(input_tensor)[1]
            channel = K.int_shape(input_tensor)[2]
            N = K.int_shape(input_tensor)[3]
        else:
            channel = K.int_shape(input_tensor)[1]
            N = K.int_shape(input_tensor)[2]
            filter_num = K.int_shape(input_tensor)[3]

    x = tf.transpose(x, [0, 1, 3, 2])
    x = tf.reshape(x, [-1, channel * filter_num, N])
    x = tf.complex(x, tf.zeros_like(x))
    Xf = tf.signal.fft(x)
    if N % 2 == 0:
        part0 = tf.ones(1)
        part1 = 2 * tf.ones(N // 2 - 1)
        part2 = tf.ones(1)
        part3 = tf.zeros(N // 2 - 1)
        h = tf.concat([part0, part1, part2, part3], axis=0)
    else:
        part0 = tf.ones(1)
        part1 = 2 * tf.ones((N + 1) // 2 - 1)
        part2 = tf.zeros((N + 1) // 2 - 1)
        h = tf.concat([part0, part1, part2], axis=0)

    hs = tf.expand_dims(h, 0)
    hs = tf.expand_dims(hs, 0)

    tf_hc = tf.complex(hs, tf.zeros_like(hs))
    xc = Xf * tf_hc
    out = tf.signal.ifft(xc)
    return tf.transpose(tf.reshape(out, [-1, channel, filter_num, N]),
                        [0, 1, 3, 2])
Exemplo n.º 16
0
def test_jaccard_distance():
    # all_right, almost_right, half_right, all_wrong
    y_true = np.array([[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0],
                       [0, 0, 1., 0.]])
    y_pred = np.array([[0, 0, 1, 0], [0, 0, 0.9, 0], [0, 0, 0.1, 0],
                       [1, 1, 0.1, 1.]])

    r = jaccard_distance(
        K.variable(y_true),
        K.variable(y_pred),
    )
    if K.is_keras_tensor(r):
        assert K.int_shape(r) == (4, )

    all_right, almost_right, half_right, all_wrong = K.eval(r)
    assert all_right == 0, 'should converge on zero'
    assert all_right < almost_right
    assert almost_right < half_right
    assert half_right < all_wrong
Exemplo n.º 17
0
def model_resnet50(input_tensor=None,
                   input_shape=None,
                   classes=1000,
                   include_top=True,
                   pooling=None,
                   weights=None,
                   data_format="channels_last"):
    ch_axis = 3 if data_format == 'channels_last' else 1
    input_shape = deduce_input_shape(input_shape,
                                     require_flatten=include_top,
                                     weights=weights,
                                     data_format=data_format)
    if input_tensor is not None:
        if not backend.is_keras_tensor(input_tensor):
            raise ValueError("input_tensor must be a Keras layer tensor.")
        img_input = input_tensor
    else:
        img_input = layers.Input(shape=input_shape)
    net = cnn_resnet50(img_input, ch_axis=ch_axis)
    if include_top:
        net = top_resnet(net, classes)
    else:
        # add global pooling if required
        net = pool_resnet(net, pooling, data_format)
    if input_tensor is not None:
        inputs = utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, net, name='resnet50')
    if weights == 'imagenet':
        resource = KERAS_TEAM['RESNET50']
        resource = resource['WITH_TOP'] if include_top else resource['NO_TOP']
        origin = resource.uri
        resource_path = utils.get_file(resource.name,
                                       origin,
                                       cache_subdir="models",
                                       file_hash=resource.file_hash)
        model.load_weights(resource_path)
        pass
    elif weights is not None:
        model.load_weights(weights)
    return model
Exemplo n.º 18
0
def model_vgg16(input_tensor=None,
                input_shape=None,
                classes=1000,
                include_top=True,
                pooling=None,
                weights=None):
    # provide a way to compute the default input shape
    input_shape = deduce_input_shape(input_shape,
                                     require_flatten=include_top,
                                     weights=weights)
    if input_tensor is not None:
        if not backend.is_keras_tensor(input_tensor):
            raise ValueError("input_tensor must be a Keras layer tensor.")
        img_input = input_tensor
    else:
        img_input = layers.Input(shape=input_shape)
    net = cnn_vgg16(img_input)
    if include_top:
        # add the top classification network
        net = top_vgg(net, classes)
    else:
        # add global pooling if required
        net = pool_cnn(net, pooling)
    if input_tensor is not None:
        inputs = utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, net, name='vgg16')
    if weights == 'imagenet':
        resource = FCHOLLET['VGG16']
        resource = resource['WITH_TOP'] if include_top else resource['NO_TOP']
        origin = resource.uri
        resource_path = utils.get_file(resource.name,
                                       origin,
                                       cache_subdir="models",
                                       file_hash=resource.file_hash)
        model.load_weights(resource_path)
    elif weights is not None:
        model.load_weights(weights)
    return model
Exemplo n.º 19
0
def featurenet_3D_backbone(input_tensor=None,
                           input_shape=None,
                           n_filters=32,
                           **kwargs):
    """Construct the deepcell backbone with five convolutional units

    Args:
        input_tensor (tensor): Input tensor to specify input size
        n_filters (int): Number of filters for convolutional layers

    Returns:
        tuple: List of backbone layers, list of backbone names
    """
    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Build out backbone
    c1 = featurenet_3D_block(img_input, n_filters)  # 1/2 64x64
    c2 = featurenet_3D_block(c1, n_filters)  # 1/4 32x32
    c3 = featurenet_3D_block(c2, n_filters)  # 1/8 16x16
    c4 = featurenet_3D_block(c3, n_filters)  # 1/16 8x8
    c5 = featurenet_3D_block(c4, n_filters)  # 1/32 4x4

    backbone_features = [c1, c2, c3, c4, c5]
    backbone_names = ['C1', 'C2', 'C3', 'C4', 'C5']
    output_dict = {}
    for name, feature in zip(backbone_names, backbone_features):
        output_dict[name] = feature

    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    model = Model(inputs=inputs, outputs=backbone_features)
    return model, output_dict
Exemplo n.º 20
0
def ResNet50(input_tensor=None, input_shape=None):
    model_name = 'resnet50'

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    x = layers.Conv2D(64, 7, strides=2, use_bias=False,
                      name='conv1_conv')(img_input)
    x = layers.BatchNormalization(axis=bn_axis,
                                  epsilon=1.001e-5,
                                  name='conv1_bn')(x)
    p0 = layers.Activation('relu', name='conv1_relu')(x)
    x = layers.MaxPooling2D(3, strides=2, padding='SAME',
                            name='pool1_pool')(p0)

    p1 = stack1(x, 64, 3, stride1=1, name='conv2')
    p2 = stack1(p1, 128, 4, stride1=2, name='conv3')
    p3 = stack1(p2, 256, 6, stride1=1, dilation=2, name='conv4')
    p4 = stack1(p3, 512, 3, stride1=1, name='conv5')
    x = p4

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name=model_name)

    return model
Exemplo n.º 21
0
def ResNet(stack_fn,
           preact,
           use_bias,
           model_name='resnet',
           include_top=True,
           input_tensor=None,
           input_shape=None,
           pooling=None,
           classes=1000,
           **kwargs):
    """Instantiates the ResNet, ResNetV2, and ResNeXt architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.
    # Arguments
        stack_fn: a function that returns output tensor for the
            stacked residual blocks.
        preact: whether to use pre-activation or not
            (True for ResNetV2, False for ResNet and ResNeXt).
        use_bias: whether to use biases for convolutional layers or not
            (True for ResNet and ResNetV2, False for ResNeXt).
        model_name: string, model name.
        include_top: whether to include the fully-connected
            layer at the top of the network.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels.
        pooling: optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.
    # Returns
        A Keras model instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """


    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    x = layers.ZeroPadding3D(padding=3, name='conv1_pad')(img_input)
    x = layers.Conv3D(64, 7, strides=2, use_bias=use_bias, name='conv1_conv')(x)

    if preact is False:
        x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                      name='conv1_bn')(x)
        x = layers.Activation('relu', name='conv1_relu')(x)

    x = layers.ZeroPadding3D(padding=1, name='pool1_pad')(x)
    x = layers.MaxPooling3D(3, strides=2, name='pool1_pool')(x)

    x = stack_fn(x)

    if preact is True:
        x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                      name='post_bn')(x)
        x = layers.Activation('relu', name='post_relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling3D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='probs')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling3D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling3D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name=model_name)

    return model
def ResNet50(include_top=True, input_tensor=None, input_shape=None, pooling=None, classes=10, squeeze=False,
             squeeze_type='normal', **kwargs):
    """Instantiates the ResNet50 architecture.
    
    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.
    # Returns
        A Keras model instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """

    # global backend, layers, models, keras_utils
    # backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    # Determine proper input shape
    input_shape = (32, 32, 3)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # K.learning_phase()
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), padding='valid', kernel_initializer='he_normal', name='conv1')(x)
    # x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x, training = False)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = ZeroPadding2D(padding=(1, 1), name='pool1_pad')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    # conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', squeeze=squeeze, squeeze_type=squeeze_type)

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', squeeze=squeeze, squeeze_type=squeeze_type)

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f', squeeze=squeeze, squeeze_type=squeeze_type)

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', squeeze=squeeze, squeeze_type=squeeze_type)
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', squeeze=squeeze, squeeze_type=squeeze_type)

    # Output shape: (1, 1, depth)

    # x = AveragePooling2D((7, 7), name='avg_pool')(x)
    # print("Output shape :")
    # print(x.get_shape())

    if include_top:
        x = Flatten()(x)
        # print("After flatten ")
        # print(x.get_shape())
        x = Dense(classes, activation='softmax', name='fc1000')(x)
        # print("After Dense ")
        # print(x.get_shape())

    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    return model
Exemplo n.º 23
0
def SEDenseNet(input_shape=None,
               depth=40,
               nb_dense_block=3,
               growth_rate=12,
               nb_filter=-1,
               nb_layers_per_block=-1,
               bottleneck=False,
               reduction=0.0,
               dropout_rate=0.0,
               weight_decay=1e-4,
               subsample_initial_block=False,
               include_top=True,
               weights=None,
               input_tensor=None,
               classes=10,
               activation='softmax'):
    """Instantiate the SE DenseNet architecture
        # Arguments
            input_shape: optional shape tuple, only to be specified
                if `include_top` is False (otherwise the input shape
                has to be `(32, 32, 3)` (with `channels_last` dim ordering)
                or `(3, 32, 32)` (with `channels_first` dim ordering).
                It should have exactly 3 inputs channels,
                and width and height should be no smaller than 8.
                E.g. `(200, 200, 3)` would be one valid value.
            depth: number or layers in the DenseNet
            nb_dense_block: number of dense blocks to add to end (generally = 3)
            growth_rate: number of filters to add per dense block
            nb_filter: initial number of filters. -1 indicates initial
                number of filters is 2 * growth_rate
            nb_layers_per_block: number of layers in each dense block.
                Can be a -1, positive integer or a list.
                If -1, calculates nb_layer_per_block from the network depth.
                If positive integer, a set number of layers per dense block.
                If list, nb_layer is used as provided. Note that list size must
                be (nb_dense_block + 1)
            bottleneck: flag to add bottleneck blocks in between dense blocks
            reduction: reduction factor of transition blocks.
                Note : reduction value is inverted to compute compression.
            dropout_rate: dropout rate
            weight_decay: weight decay rate
            subsample_initial_block: Set to True to subsample the initial convolution and
                add a MaxPool2D before the dense blocks are added.
            include_top: whether to include the fully-connected
                layer at the top of the network.
            weights: one of `None` (random initialization) or
                'imagenet' (pre-training on ImageNet)..
            input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
                to use as image input for the model.
            classes: optional number of classes to classify images
                into, only to be specified if `include_top` is True, and
                if no `weights` argument is specified.
            activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
                Note that if sigmoid is used, classes must be 1.
        # Returns
            A Keras model instance.
        """

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `cifar10` '
                         '(pre-training on CIFAR-10).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as ImageNet with `include_top`'
                         ' as true, `classes` should be 1000')

    if activation not in ['softmax', 'sigmoid']:
        raise ValueError('activation must be one of "softmax" or "sigmoid"')

    if activation == 'sigmoid' and classes != 1:
        raise ValueError(
            'sigmoid activation can only be used when classes = 1')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=32,
                                      min_size=8,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = __create_dense_net(classes, img_input, include_top, depth,
                           nb_dense_block, growth_rate, nb_filter,
                           nb_layers_per_block, bottleneck, reduction,
                           dropout_rate, weight_decay, subsample_initial_block,
                           activation)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='se-densenet')

    return model
Exemplo n.º 24
0
def QuantizedResNet50FusedBN(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             batch_size=None,
             nbits=24,
             fbits=9, 
             rounding_method='nearest',
             quant_mode='hybrid',
             overflow_mode=False,
             stop_gradient=False,
             verbose=True):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 197.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if verbose:
        print('\nBuilding model : Quantized ResNet50')
        pbar=tqdm(total=19)
    
    layer_quantizer=build_layer_quantizer(nbits,fbits,rounding_method,overflow_mode,stop_gradient)
    if verbose:
        pbar.set_postfix_str('Preparation')
        pbar.update()

    
    if not os.path.exists(weights):
        raise ValueError('The `weights` argument must be the path to the weights file to be loaded. File not found!')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(batch_shape=(batch_size,)+input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, batch_shape=(batch_size,)+input_shape)
        else:
            img_input = input_tensor
        
    if verbose:
        pbar.set_postfix_str('building stage 1')

    x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
    x = QuantizedConv2D(64, 
                        kernel_size=(7, 7),
                        strides=(2, 2),
                        padding='valid',
                        quantizers=layer_quantizer,
                        name='conv1',
                        quant_mode=quant_mode)(x)
    x = layers.Activation('relu')(x)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
    if verbose:
        pbar.update()

        pbar.set_postfix_str('building stage 2 block a')
    x = conv_block_fused_BN(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), 
                            layer_quantizer=layer_quantizer, 
                            quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 2 block b')
    x = identity_block_fused_BN(x, 3, [64, 64, 256], stage=2, block='b', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 2 block c')
    x = identity_block_fused_BN(x, 3, [64, 64, 256], stage=2, block='c', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()

        pbar.set_postfix_str('building stage 3 block a')
    x = conv_block_fused_BN(x, 3, [128, 128, 512], stage=3, block='a', 
                            layer_quantizer=layer_quantizer, 
                            quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 3 block b')
    x = identity_block_fused_BN(x, 3, [128, 128, 512], stage=3, block='b', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 3 block c')
    x = identity_block_fused_BN(x, 3, [128, 128, 512], stage=3, block='c', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 3 block d')
    x = identity_block_fused_BN(x, 3, [128, 128, 512], stage=3, block='d', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()

        pbar.set_postfix_str('building stage 4 block a')    
    x = conv_block_fused_BN(x, 3, [256, 256, 1024], stage=4, block='a', 
                            layer_quantizer=layer_quantizer, 
                            quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 3 block b')
    x = identity_block_fused_BN(x, 3, [256, 256, 1024], stage=4, block='b', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 3 block c')
    x = identity_block_fused_BN(x, 3, [256, 256, 1024], stage=4, block='c', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 3 block d')
    x = identity_block_fused_BN(x, 3, [256, 256, 1024], stage=4, block='d', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 3 block e')
    x = identity_block_fused_BN(x, 3, [256, 256, 1024], stage=4, block='e', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 3 block f')
    x = identity_block_fused_BN(x, 3, [256, 256, 1024], stage=4, block='f', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()

        pbar.set_postfix_str('building stage 5 block a')
    x = conv_block_fused_BN(x, 3, [512, 512, 2048], stage=5, block='a', 
                            layer_quantizer=layer_quantizer, 
                            quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 5 block b')
    x = identity_block_fused_BN(x, 3, [512, 512, 2048], stage=5, block='b', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()
        pbar.set_postfix_str('building stage 5 block c')
    x = identity_block_fused_BN(x, 3, [512, 512, 2048], stage=5, block='c', 
                                layer_quantizer=layer_quantizer, 
                                quant_mode=quant_mode)
    if verbose:
        pbar.update()

        pbar.set_postfix_str('building output block')
    if include_top:
        x = layers.AveragePooling2D((7, 7), name='avg_pool')(x)
        x = QuantizedFlatten()(x)
        x = QuantizedDense(classes, activation='softmax', name='fc1000',
                           quantizers=layer_quantizer,
                           quant_mode=quant_mode,
                           last_layer=True)(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)
        else:
            warnings.warn('The output shape of `ResNet50(include_top=False)` '
                          'has been changed since Keras 2.2.0.')
    if verbose:
        pbar.update()


    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = backend.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, x, name='quantized_resnet50_fusedBN')
    
    if verbose:
        pbar.set_postfix_str('Model Built')
        pbar.close()

    # load weights
    if weights is not None:
        model.load_weights(weights)

    return model
Exemplo n.º 25
0
def RESNET50(include_top=True,
             weights='vggface',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=8631):
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = Conv2D(64, (7, 7),
               use_bias=False,
               strides=(2, 2),
               padding='same',
               name='conv1/7x7_s2')(img_input)
    x = BatchNormalization(axis=bn_axis, name='conv1/7x7_s2/bn')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = resnet_conv_block(x,
                          3, [64, 64, 256],
                          stage=2,
                          block=1,
                          strides=(1, 1))
    x = resnet_identity_block(x, 3, [64, 64, 256], stage=2, block=2)
    x = resnet_identity_block(x, 3, [64, 64, 256], stage=2, block=3)

    x = resnet_conv_block(x, 3, [128, 128, 512], stage=3, block=1)
    x = resnet_identity_block(x, 3, [128, 128, 512], stage=3, block=2)
    x = resnet_identity_block(x, 3, [128, 128, 512], stage=3, block=3)
    x = resnet_identity_block(x, 3, [128, 128, 512], stage=3, block=4)

    x = resnet_conv_block(x, 3, [256, 256, 1024], stage=4, block=1)
    x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=2)
    x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=3)
    x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=4)
    x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=5)
    x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=6)

    x = resnet_conv_block(x, 3, [512, 512, 2048], stage=5, block=1)
    x = resnet_identity_block(x, 3, [512, 512, 2048], stage=5, block=2)
    x = resnet_identity_block(x, 3, [512, 512, 2048], stage=5, block=3)

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='classifier')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='vggface_resnet50')

    # load weights
    if weights == 'vggface':
        # if include_top:
        #     weights_path = get_file('rcmalli_vggface_tf_resnet50.h5',
        #                             utils.RESNET50_WEIGHTS_PATH,
        #                             cache_subdir=utils.VGGFACE_DIR)
        # else:
        #     weights_path = get_file('rcmalli_vggface_tf_notop_resnet50.h5',
        #                             utils.RESNET50_WEIGHTS_PATH_NO_TOP,
        #                             cache_subdir=utils.VGGFACE_DIR)
        weights_path = os.path.join(WEIGHTS_DIR,
                                    'rcmalli_vggface_tf_notop_resnet50.h5')
        model.load_weights(weights_path)
        # if K.backend() == 'theano':
        #     layer_utils.convert_all_kernels_in_model(model)
        #     if include_top:
        #         maxpool = model.get_layer(name='avg_pool')
        #         shape = maxpool.output_shape[1:]
        #         dense = model.get_layer(name='classifier')
        #         layer_utils.convert_dense_weights_data_format(dense, shape,
        #                                                       'channels_first')

        if K.image_data_format() == 'channels_first' and K.backend(
        ) == 'tensorflow':
            warnings.warn('You are using the TensorFlow backend, yet you '
                          'are using the Theano '
                          'image data format convention '
                          '(`image_data_format="channels_first"`). '
                          'For best performance, set '
                          '`image_data_format="channels_last"` in '
                          'your Keras config '
                          'at ~/.keras/keras.json.')
    elif weights is not None:
        model.load_weights(weights)

    return model
Exemplo n.º 26
0
def __DenseNet121(nb_dense_block=4, growth_rate=32, nb_filter=64, reduction=0.5, dropout_rate=0.0,
        weight_decay=1e-4, load_weights=True, include_top=False, input_tensor=None,
        pooling='avg', input_shape=(224, 224, 3), classes=1000):
    '''Instantiate the DenseNet 121 architecture,
        # Arguments
            nb_dense_block: number of dense blocks to add to end
            growth_rate: number of filters to add per dense block
            nb_filter: initial number of filters
            reduction: reduction factor of transition blocks.
            dropout_rate: dropout rate
            weight_decay: weight decay factor
            classes: optional number of classes to classify images
            weights_path: path to pre-trained weights
        # Returns
            A Keras model instance.
    '''
    eps = 1.1e-5

    # compute compression factor
    compression = 1.0 - reduction

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
        # endif
    # endif

    # Handle Dimension Ordering for different backends
    global concat_axis
    if K.image_data_format() == 'channels_last':
        concat_axis = 3
    else:
        concat_axis = 1
    # endif

    # From architecture for ImageNet (Table 1 in the paper)
    nb_filter = 64
    nb_layers = [6,12,24,16] # For DenseNet-121

    # Initial convolution
    x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input)
    x = Convolution2D(nb_filter, kernel_size=(7, 7), strides=(2, 2), name='conv1', use_bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv1_bn')(x)
    x = Scale(axis=concat_axis, name='conv1_scale')(x)
    x = Activation('relu', name='relu1')(x)
    x = ZeroPadding2D((1, 1), name='pool1_zeropadding')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x)

    # Add dense blocks
    for block_idx in range(nb_dense_block - 1):
        stage = block_idx+2
        x, nb_filter = dense_block(x, stage, nb_layers[block_idx], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay)

        # Add transition_block
        x = transition_block(x, stage, nb_filter, compression=compression, dropout_rate=dropout_rate, weight_decay=weight_decay)
        nb_filter = int(nb_filter * compression)
    # endfor

    final_stage = stage + 1
    x, nb_filter = dense_block(x, final_stage, nb_layers[-1], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay)

    x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv'+str(final_stage)+'_blk_bn')(x)
    x = Scale(axis=concat_axis, name='conv'+str(final_stage)+'_blk_scale')(x)
    x = Activation('relu', name='relu'+str(final_stage)+'_blk')(x)
    if include_top:
        x = GlobalAveragePooling2D(name='pool'+str(final_stage))(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D(name='pool'+str(final_stage))(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D(name='pool'+str(final_stage))(x)
        # endif
    # endif
    fc_ll = x

    x = Dense(classes, name='fc6')(x)
    x = Activation('softmax', name='prob')(x)

    model = Model(img_input, x, name='densenet121')
    if load_weights:
        weights_path = get_file('densenet121_weights_tf.h5', DENSENET_121_WEIGHTS_PATH, cache_subdir='models')
        model.load_weights(weights_path)
    # endif
 
    if include_top == False:
        model = Model(img_input, fc_ll)
    # endif
        
    return model
Exemplo n.º 27
0
def nn_base(width_coefficient,
            depth_divisor,
            input_tensor=None,
            trainable=False,
            dropout_rate=0.2,
            drop_connect_rate=0.2):

    # open json contaning information about blocks
    with open('./block_args.json', 'r') as f:
        blocks_json = json.load(f)

    # determine input shape. As the code will only support
    # tensorflow backend, there is only one option for input
    # shape
    input_shape = (None, None, 3
                   )  # 3 because the model will receive RGB images

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # because the backend is tensorflow,
    # K.image_dim_ordering() == 'tf
    bn_axis = 3

    # get swish activation function
    activation = get_swish()

    # build stem
    x = Conv2D(round_filters(32, width_coefficient, depth_divisor),
               3,
               padding='same',
               use_bias=False,
               kernel_initializer=CONV_KERNEL_INITIALIZER,
               name='stem_conv')(img_input)
    x = BatchNormalization(axis=bn_axis, name='stem_bn')(x)
    x = Activation(activation, name='stem_activation')(x)

    # build blocks
    total_num_blocks = sum(blocks_json[block]['num_repeat']
                           for block in blocks_json)
    block_num = 0

    # go through every big block defined in block_args.json
    for idx, block in enumerate(blocks_json):

        # transform this specific block in an object
        block = Struct(**blocks_json[block])

        # ensure num_repeat is bigger than zero
        assert block.num_repeat > 0

        # update block input and output filters based on depth multiplier.
        block.input_filters = round_filters(block.input_filters,
                                            width_coefficient, depth_divisor)

        # the first block needs to take care of stride and filter size increase.
        drop_rate = drop_connect_rate * float(block_num) / total_num_blocks
        x = mb_conv_block(block,
                          drop_rate=drop_rate,
                          activation=activation,
                          prefix='block{}a_'.format(idx + 1))(x)

        block_num += 1
        if block.num_repeat > 1:
            block.input_filters = block.output_filters
            block.strides = [1, 1]

            for bidx in range(block.num_repeat - 1):
                drop_rate = drop_connect_rate * float(
                    block_num) / total_num_blocks
                block_prefix = 'block{}{}_'.format(
                    idx + 1, string.ascii_lowercase[bidx + 1])

                x = mb_conv_block(block,
                                  prefix=block_prefix,
                                  drop_rate=drop_rate,
                                  activation=activation)
                block_num += 1

    # build top
    x = Conv2D(round_filters(1280, width_coefficient, depth_divisor),
               1,
               padding='same',
               use_bias=False,
               kernel_initializer=CONV_KERNEL_INITIALIZER,
               name='top_conv')(x)
    x = BatchNormalization(axis=bn_axis, name='top_bn')(x)
    x = Activation(activation, name='top_activation')(x)

    return x
Exemplo n.º 28
0
def EfficientNet(input_shape, block_args_list, global_params, input_tensor=None, include_top=True, pooling=None):
    batch_norm_momentum = global_params.batch_norm_momentum
    batch_norm_epsilon = global_params.batch_norm_epsilon
    if global_params.data_format == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = -1

    # Stem part
    # Stem part
    if input_tensor is None:
        inputs = KL.Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            inputs = KL.Input(tensor=input_tensor, shape=input_shape)
        else:
            inputs = input_tensor
    x = inputs
    x = KL.Conv2D(
        filters=round_filters(32, global_params),
        kernel_size=[3, 3],
        strides=[2, 2],
        kernel_initializer=conv_kernel_initializer,
        padding='same',
        use_bias=False
    )(x)
    x = KL.BatchNormalization(
        axis=channel_axis,
        momentum=batch_norm_momentum,
        epsilon=batch_norm_epsilon
    )(x)
    x = Swish()(x)

    # Blocks part
    block_idx = 1
    n_blocks = sum([block_args.num_repeat for block_args in block_args_list])
    drop_rate = global_params.drop_connect_rate or 0
    drop_rate_dx = drop_rate / n_blocks

    for block_args in block_args_list:
        assert block_args.num_repeat > 0
        # Update block input and output filters based on depth multiplier.
        block_args = block_args._replace(
            input_filters=round_filters(block_args.input_filters, global_params),
            output_filters=round_filters(block_args.output_filters, global_params),
            num_repeat=round_repeats(block_args.num_repeat, global_params)
        )

        # The first block needs to take care of stride and filter size increase.
        x = MBConvBlock(block_args, global_params,
                        drop_connect_rate=drop_rate_dx * block_idx)(x)
        block_idx += 1

        if block_args.num_repeat > 1:
            block_args = block_args._replace(input_filters=block_args.output_filters, strides=[1, 1])

        for _ in xrange(block_args.num_repeat - 1):
            x = MBConvBlock(block_args, global_params,
                            drop_connect_rate=drop_rate_dx * block_idx)(x)
            block_idx += 1

    # Head part
    x = KL.Conv2D(
        filters=round_filters(1280, global_params),
        kernel_size=[1, 1],
        strides=[1, 1],
        kernel_initializer=conv_kernel_initializer,
        padding='same',
        use_bias=False
    )(x)
    x = KL.BatchNormalization(
        axis=channel_axis,
        momentum=batch_norm_momentum,
        epsilon=batch_norm_epsilon
    )(x)
    x = Swish()(x)

    if include_top:
        x = KL.GlobalAveragePooling2D(data_format=global_params.data_format)(x)
        if global_params.dropout_rate > 0:
            x = KL.Dropout(global_params.dropout_rate)(x)
        x = KL.Dense(global_params.num_classes, kernel_initializer=dense_kernel_initializer)(x)
        x = KL.Activation('softmax')(x)
    else:
        if pooling == 'avg':
            x = KL.GlobalAveragePooling2D(data_format=global_params.data_format)(x)
        elif pooling == 'max':
            x = KL.GlobalMaxPooling2D(data_format=global_params.data_format)(x)

    outputs = x
    model = KM.Model(inputs, outputs)

    return model
Exemplo n.º 29
0
def build_resnet(repetitions=(2, 2, 2, 2),
                 include_top=True,
                 input_tensor=None,
                 input_shape=None,
                 classes=1000,
                 block_type='usual',
                 name=None):
    """
    TODO
    """

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format='channels_last',
                                      require_flatten=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape, name='data')
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # get parameters for model layers
    no_scale_bn_params = get_bn_params(scale=False)
    bn_params = get_bn_params()
    conv_params = get_conv_params()
    init_filters = 64

    if block_type == 'basic':
        conv_block = basic_conv_block
        identity_block = basic_identity_block
    else:
        conv_block = usual_conv_block
        identity_block = usual_identity_block

    # resnet bottom
    x = BatchNormalization(name='bn_data', **no_scale_bn_params)(img_input)
    x = ZeroPadding2D(padding=(3, 3))(x)
    x = Conv2D(init_filters, (7, 7),
               strides=(2, 2),
               name='conv0',
               **conv_params)(x)
    x = BatchNormalization(name='bn0', **bn_params)(x)
    x = Activation('relu', name='relu0')(x)
    x = ZeroPadding2D(padding=(1, 1))(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), padding='valid',
                     name='pooling0')(x)

    # resnet body
    for stage, rep in enumerate(repetitions):
        for block in range(rep):

            filters = init_filters * (2**stage)

            # first block of first stage without strides because we have maxpooling before
            if block == 0 and stage == 0:
                x = conv_block(filters, stage, block, strides=(1, 1))(x)

            elif block == 0:
                x = conv_block(filters, stage, block, strides=(2, 2))(x)

            else:
                x = identity_block(filters, stage, block)(x)

    x = BatchNormalization(name='bn1', **bn_params)(x)
    x = Activation('relu', name='relu1')(x)

    # resnet top
    if include_top:
        x = GlobalAveragePooling2D(name='pool1')(x)
        x = Dense(classes, name='fc1')(x)
        x = Activation('softmax', name='softmax')(x)

    # Ensure that the model takes into account any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = Model(inputs, x, name=name)

    return model
def SEResNet(input_shape=None,
             initial_conv_filters=64,
             depth=[3, 4, 6, 3],
             filters=[64, 128, 256, 512],
             width=1,
             bottleneck=False,
             weight_decay=1e-4,
             include_top=True,
             weights=None,
             input_tensor=None,
             pooling=None,
             classes=1000):
    """ Instantiate the Squeeze and Excite ResNet architecture. Note that ,
        when using TensorFlow for best performance you should set
        `image_data_format="channels_last"` in your Keras config
        at ~/.keras/keras.json.
        The model are compatible with both
        TensorFlow and Theano. The dimension ordering
        convention used by the model is the one
        specified in your Keras config file.
        # Arguments
            initial_conv_filters: number of features for the initial convolution
            depth: number or layers in the each block, defined as a list.
                ResNet-50  = [3, 4, 6, 3]
                ResNet-101 = [3, 6, 23, 3]
                ResNet-152 = [3, 8, 36, 3]
            filter: number of filters per block, defined as a list.
                filters = [64, 128, 256, 512
            width: width multiplier for the network (for Wide ResNets)
            bottleneck: adds a bottleneck conv to reduce computation
            weight_decay: weight decay (l2 norm)
            include_top: whether to include the fully-connected
                layer at the top of the network.
            weights: `None` (random initialization) or `imagenet` (trained
                on ImageNet)
            input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
                to use as image input for the model.
            input_shape: optional shape tuple, only to be specified
                if `include_top` is False (otherwise the input shape
                has to be `(224, 224, 3)` (with `tf` dim ordering)
                or `(3, 224, 224)` (with `th` dim ordering).
                It should have exactly 3 inputs channels,
                and width and height should be no smaller than 8.
                E.g. `(200, 200, 3)` would be one valid value.
            pooling: Optional pooling mode for feature extraction
                when `include_top` is `False`.
                - `None` means that the output of the model will be
                    the 4D tensor output of the
                    last convolutional layer.
                - `avg` means that global average pooling
                    will be applied to the output of the
                    last convolutional layer, and thus
                    the output of the model will be a 2D tensor.
                - `max` means that global max pooling will
                    be applied.
            classes: optional number of classes to classify images
                into, only to be specified if `include_top` is True, and
                if no `weights` argument is specified.
        # Returns
            A Keras model instance.
        """

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    assert len(depth) == len(filters), "The length of filter increment list must match the length " \
                                       "of the depth list."

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=K.image_data_format(),
                                      require_flatten=False)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = _create_se_resnet(classes, img_input, include_top, initial_conv_filters,
                          filters, depth, width, bottleneck, weight_decay, pooling)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnext')

    # load weights

    return model