def testSimple(self):
     labels = [9, 3, 0]
     records = [
         self._record(labels[0], 0, 128, 255),
         self._record(labels[1], 255, 0, 1),
         self._record(labels[2], 254, 255, 0)
     ]
     contents = b"".join([record for record, _ in records])
     expected = [expected for _, expected in records]
     filename = os.path.join(self.get_temp_dir(), "cifar")
     open(filename, "wb").write(contents)
     with self.test_session() as sess:
         q = tf.FIFOQueue(99, [tf.string], shapes=())
         q.enqueue([filename]).run()
         q.close().run()
         result = cifar10_input.read_cifar10(q)
         for i in range(3):
             key, label, uint8image = sess.run(
                 [result.key, result.label, result.uint8image])
             self.assertEqual("%s:%d" % (filename, i),
                              tf.compat.as_text(key))
             self.assertEqual(labels[i], label)
             self.assertAllEqual(expected[i], uint8image)
         with self.assertRaises(tf.errors.OutOfRangeError):
             sess.run([result.key, result.uint8image])
Exemplo n.º 2
0
  def testSimple(self):
    labels = [9, 3, 0]
    records = [self._record(labels[0], 0, 128, 255),
               self._record(labels[1], 255, 0, 1),
               self._record(labels[2], 254, 255, 0)]
    i = len(records)
    contents = b"".join([record for record, _ in records])
    expected = [expected for _, expected in records]
    filename = os.path.join('/tmp', "cifar_test.bin")
    open(filename, "wb").write(contents)

    with self.test_session() as sess:
      q = tf.FIFOQueue(99, [tf.string], shapes=())
      q.enqueue([filename]).run()
      q.close().run()
      result = cifar10_input.read_cifar10(q)

      for i in range(3):
        key, label, uint8image = sess.run([
            result.key, result.label, result.uint8image])
        print("the value of key"+key)
        # print(label)
        # print(uint8image)
        # print(expected[i])
        self.assertEqual("%s:%d" % (filename, i), compat.as_text(key))
        self.assertEqual(labels[i], label)
        self.assertAllEqual(expected[i], uint8image)

      with self.assertRaises(tf.errors.OutOfRangeError):
        sess.run([result.key, result.uint8image])
Exemplo n.º 3
0
  def testSimple(self):
    labels = [9, 3, 0]
    records = [self._record(labels[0], 0, 128, 255),
               self._record(labels[1], 255, 0, 1),
               self._record(labels[2], 254, 255, 0)]
    contents = "".join([record for record, _ in records])
    expected = [expected for _, expected in records]
    filename = os.path.join(self.get_temp_dir(), "cifar")
    open(filename, "w").write(contents)

    with self.test_session() as sess:
      q = tf.FIFOQueue(99, [tf.string], shapes=())
      q.enqueue([filename]).run()
      q.close().run()
      result = cifar10_input.read_cifar10(q)

      for i in range(3):
        key, label, uint8image = sess.run([
            result.key, result.label, result.uint8image])
        self.assertEqual("%s:%d" % (filename, i), key)
        self.assertEqual(labels[i], label)
        self.assertAllEqual(expected[i], uint8image)

      with self.assertRaises(tf.errors.OutOfRangeError):
        sess.run([result.key, result.uint8image])
def distorted_inputs(data_dir, batch_size, num_epochs):
    """Construct distorted input for CIFAR training using the Reader ops.
    Args:
        data_dir: Path to the CIFAR-10 data directory.
        batch_size: Number of images per batch.
    Returns:
        images: Images. 4D tensor of [batch_size, FLAGS.image_size, FLAGS.image_size, 3] size.
        labels: Labels. 1D tensor of [batch_size] size.
    """
    filenames = [
        os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in range(1, 6)
    ]
    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a queue that produces the filenames to read.
    filename_queue = tf.train.string_input_producer(filenames, num_epochs)

    # Read examples from files in the filename queue.
    read_input = read_cifar10(filename_queue)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = FLAGS.image_size
    width = FLAGS.image_size

    # Image processing for training the network. Note the many random
    # distortions applied to the image.

    # Randomly crop a [height, width] section of the image.
    distorted_image = tf.random_crop(reshaped_image, [height, width, 3])

    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)

    # Because these operations are not commutative, consider randomizing
    # the order their operation.
    distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
    distorted_image = tf.image.random_contrast(distorted_image,
                                               lower=0.2,
                                               upper=1.8)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_whitening(distorted_image)

    # Ensure that the random shuffling has good mixing properties.
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(FLAGS.num_train_examples *
                             min_fraction_of_examples_in_queue)
    logger.info('Filling queue with %d CIFAR images before starting to train. '
                'This will take a few minutes.' % min_queue_examples)

    # Generate a batch of images and labels by building up a queue of examples.
    return _generate_image_and_label_batch(float_image,
                                           read_input.label,
                                           min_queue_examples,
                                           batch_size,
                                           shuffle=True,
                                           smr_name='image_train')
Exemplo n.º 5
0
def inputs(eval_data):
    """Construct input for CIFAR evaluation using the Reader ops.

  Args:
    eval_data: bool, indicating if one should use the train or eval data set.

  Raises:
    ValueError: if no data_dir

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
    if not FLAGS.data_dir:
        raise ValueError('Please supply a data_dir')

    if not eval_data:
        filenames = [
            os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin',
                         'data_batch_%d.bin' % i) for i in xrange(1, 5)
        ]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
    else:
        filenames = [
            os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin',
                         'test_batch.bin')
        ]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL

    for f in filenames:
        if not gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a queue that produces the filenames to read.
    filename_queue = tf.train.string_input_producer(filenames)

    # Read examples from files in the filename queue.
    read_input = cifar10_input.read_cifar10(filename_queue)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    # Image processing for evaluation.
    # Crop the central [height, width] of the image.
    resized_image = tf.image.resize_image_with_crop_or_pad(
        reshaped_image, width, height)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_whitening(resized_image)

    # Ensure that the random shuffling has good mixing properties.
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(num_examples_per_epoch *
                             min_fraction_of_examples_in_queue)

    # Generate a batch of images and labels by building up a queue of examples.
    return _generate_image_and_label_batch(float_image, read_input.label,
                                           min_queue_examples)
Exemplo n.º 6
0
def distorted_inputs():
    """Construct distorted input for CIFAR training using the Reader ops.

  Raises:
    ValueError: if no data_dir

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
    filenames = [
        os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin',
                     'data_batch_%d.bin' % i) for i in xrange(1, 5)
    ]
    for f in filenames:
        if not gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a queue that produces the filenames to read.
    filename_queue = tf.train.string_input_producer(filenames)

    # Read examples from files in the filename queue.
    read_input = cifar10_input.read_cifar10(filename_queue)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    # Image processing for training the network. Note the many random
    # distortions applied to the image.

    # Randomly crop a [height, width] section of the image.
    distorted_image = tf.image.random_crop(reshaped_image, [height, width])

    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)

    # Because these operations are not commutative, consider randomizing
    # randomize the order their operation.
    distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
    distorted_image = tf.image.random_contrast(distorted_image,
                                               lower=0.2,
                                               upper=1.8)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_whitening(distorted_image)

    # Ensure that the random shuffling has good mixing properties.
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                             min_fraction_of_examples_in_queue)
    print(
        'Filling queue with %d CIFAR images before starting to train. '
        'This will take a few minutes.' % min_queue_examples)

    # Generate a batch of images and labels by building up a queue of examples.
    return _generate_image_and_label_batch(float_image, read_input.label,
                                           min_queue_examples)
Exemplo n.º 7
0
def inputs(eval_data):
  """Construct input for CIFAR evaluation using the Reader ops.

  Args:
    eval_data: bool, indicating if one should use the train or eval data set.

  Raises:
    ValueError: if no data_dir

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')

  if not eval_data:
    filenames = [os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin',
                              'data_batch_%d.bin' % i)
                 for i in xrange(1, 5)]
    num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
  else:
    filenames = [os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin',
                              'test_batch.bin')]
    num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL

  for f in filenames:
    if not gfile.Exists(f):
      raise ValueError('Failed to find file: ' + f)

  # Create a queue that produces the filenames to read.
  filename_queue = tf.train.string_input_producer(filenames)

  # Read examples from files in the filename queue.
  read_input = cifar10_input.read_cifar10(filename_queue)
  reshaped_image = tf.cast(read_input.uint8image, tf.float32)

  height = IMAGE_SIZE
  width = IMAGE_SIZE

  # Image processing for evaluation.
  # Crop the central [height, width] of the image.
  resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                         width, height)

  # Subtract off the mean and divide by the variance of the pixels.
  float_image = tf.image.per_image_whitening(resized_image)

  # Ensure that the random shuffling has good mixing properties.
  min_fraction_of_examples_in_queue = 0.4
  min_queue_examples = int(num_examples_per_epoch *
                           min_fraction_of_examples_in_queue)

  # Generate a batch of images and labels by building up a queue of examples.
  return _generate_image_and_label_batch(float_image, read_input.label,
                                         min_queue_examples)
Exemplo n.º 8
0
def distorted_inputs():
  """Construct distorted input for CIFAR training using the Reader ops.

  Raises:
    ValueError: if no data_dir

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  filenames = [os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin',
                            'data_batch_%d.bin' % i)
               for i in xrange(1, 5)]
  for f in filenames:
    if not gfile.Exists(f):
      raise ValueError('Failed to find file: ' + f)

  # Create a queue that produces the filenames to read.
  filename_queue = tf.train.string_input_producer(filenames)

  # Read examples from files in the filename queue.
  read_input = cifar10_input.read_cifar10(filename_queue)
  reshaped_image = tf.cast(read_input.uint8image, tf.float32)

  height = IMAGE_SIZE
  width = IMAGE_SIZE

  # Image processing for training the network. Note the many random
  # distortions applied to the image.

  # Randomly crop a [height, width] section of the image.
  distorted_image = tf.image.random_crop(reshaped_image, [height, width])

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

  # Because these operations are not commutative, consider randomizing
  # randomize the order their operation.
  distorted_image = tf.image.random_brightness(distorted_image,
                                               max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image,
                                             lower=0.2, upper=1.8)

  # Subtract off the mean and divide by the variance of the pixels.
  float_image = tf.image.per_image_whitening(distorted_image)

  # Ensure that the random shuffling has good mixing properties.
  min_fraction_of_examples_in_queue = 0.4
  min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                           min_fraction_of_examples_in_queue)
  print ('Filling queue with %d CIFAR images before starting to train. '
         'This will take a few minutes.' % min_queue_examples)

  # Generate a batch of images and labels by building up a queue of examples.
  return _generate_image_and_label_batch(float_image, read_input.label,
                                         min_queue_examples)
def eval_inputs(data_dir, batch_size, num_epochs):
    """Construct input for CIFAR evaluation using the Reader ops.
    Args:
        data_dir: Path to the CIFAR-10 data directory.
        batch_size: Number of images per batch.
    Returns:
        images: Images. 4D tensor of [batch_size, FLAGS.image_size, FLAGS.image_size, 3] size.
        labels: Labels. 1D tensor of [batch_size] size.
    """
    # if not eval_data:
    #     filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
    #                 for i in xrange(1, 6)]
    #     num_examples_per_epoch = FLAGS.num_train_examples
    # else:
    filenames = [os.path.join(data_dir, 'test_batch.bin')]
    num_examples_per_epoch = FLAGS.num_test_examples

    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a queue that produces the filenames to read.
    filename_queue = tf.train.string_input_producer(filenames, num_epochs)

    # Read examples from files in the filename queue.
    read_input = read_cifar10(filename_queue)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = FLAGS.image_size
    width = FLAGS.image_size

    # Image processing for evaluation.
    # Crop the central [height, width] of the image.
    resized_image = tf.image.resize_image_with_crop_or_pad(
        reshaped_image, width, height)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_whitening(resized_image)

    # Ensure that the random shuffling has good mixing properties.
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(num_examples_per_epoch *
                             min_fraction_of_examples_in_queue)

    # Generate a batch of images and labels by building up a queue of examples.
    return _generate_image_and_label_batch(float_image,
                                           read_input.label,
                                           min_queue_examples,
                                           batch_size,
                                           shuffle=False,
                                           smr_name='image_eval')