Exemplo n.º 1
0
def multi_gpu_model(model, gpus):
    """Replicates a model on different GPUs.

  Specifically, this function implements single-machine
  multi-GPU data parallelism. It works in the following way:

  - Divide the model's input(s) into multiple sub-batches.
  - Apply a model copy on each sub-batch. Every model copy
      is executed on a dedicated GPU.
  - Concatenate the results (on CPU) into one big batch.

  E.g. if your `batch_size` is 64 and you use `gpus=2`,
  then we will divide the input into 2 sub-batches of 32 samples,
  process each sub-batch on one GPU, then return the full
  batch of 64 processed samples.

  This induces quasi-linear speedup on up to 8 GPUs.

  This function is only available with the TensorFlow backend
  for the time being.

  Arguments:
      model: A Keras model instance. To avoid OOM errors,
          this model could have been built on CPU, for instance
          (see usage example below).
      gpus: Integer >= 2, number of on GPUs on which to create
          model replicas.

  Returns:
      A Keras `Model` instance which can be used just like the initial
      `model` argument, but which distributes its workload on multiple GPUs.

  Example:

  ```python
      import tensorflow as tf
      from keras.applications import Xception
      from keras.utils import multi_gpu_model

      num_samples = 1000
      height = 224
      width = 224
      num_classes = 1000

      # Instantiate the base model (or "template" model).
      # We recommend doing this with under a CPU device scope,
      # so that the model's weights are hosted on CPU memory.
      # Otherwise they may end up hosted on a GPU, which would
      # complicate weight sharing.
      with tf.device('/cpu:0'):
          model = Xception(weights=None,
                           input_shape=(height, width, 3),
                           classes=num_classes)

      # Replicates the model on 8 GPUs.
      # This assumes that your machine has 8 available GPUs.
      parallel_model = multi_gpu_model(model, gpus=8)
      parallel_model.compile(loss='categorical_crossentropy',
                             optimizer='rmsprop')

      # Generate dummy data.
      x = np.random.random((num_samples, height, width, 3))
      y = np.random.random((num_samples, num_classes))

      # This `fit` call will be distributed on 8 GPUs.
      # Since the batch size is 256, each GPU will process 32 samples.
      parallel_model.fit(x, y, epochs=20, batch_size=256)

      # Save model via the template model (which shares the same weights):
      model.save('my_model.h5')
  ```

  Raises:
    ValueError: if the `gpus` argument does not match available devices.
  """
    # pylint: disable=g-import-not-at-top
    from tensorflow.python.keras._impl.keras.layers.core import Lambda
    from tensorflow.python.keras._impl.keras.layers.merge import concatenate

    if isinstance(gpus, (list, tuple)):
        if len(gpus) <= 1:
            raise ValueError('For multi-gpu usage to be effective, '
                             'call `multi_gpu_model` with `len(gpus) >= 2`. '
                             'Received: `gpus=%s`' % gpus)
        num_gpus = len(gpus)
        target_gpu_ids = gpus
    else:
        if gpus <= 1:
            raise ValueError('For multi-gpu usage to be effective, '
                             'call `multi_gpu_model` with `gpus >= 2`. '
                             'Received: `gpus=%d`' % gpus)
        num_gpus = gpus
        target_gpu_ids = range(num_gpus)

    target_devices = ['/cpu:0'] + ['/gpu:%d' % i for i in target_gpu_ids]
    available_devices = _get_available_devices()
    available_devices = [
        _normalize_device_name(name) for name in available_devices
    ]
    for device in target_devices:
        if device not in available_devices:
            raise ValueError(
                'To call `multi_gpu_model` with `gpus=%d`, '
                'we expect the following devices to be available: %s. '
                'However this machine only has: %s. '
                'Try reducing `gpus`.' %
                (gpus, target_devices, available_devices))

    def get_slice(data, i, parts):
        """Slice an array into `parts` slices and return slice `i`.

    Arguments:
      data: array to slice.
      i: index of slice to return.
      parts: number of slices to make.

    Returns:
      Slice `i` of `data`.
    """
        shape = array_ops.shape(data)
        batch_size = shape[:1]
        input_shape = shape[1:]
        step = batch_size // parts
        if i == num_gpus - 1:
            size = batch_size - step * i
        else:
            size = step
        size = array_ops.concat([size, input_shape], axis=0)
        stride = array_ops.concat([step, input_shape * 0], axis=0)
        start = stride * i
        return array_ops.slice(data, start, size)

    all_outputs = []
    for i in range(len(model.outputs)):
        all_outputs.append([])

    # Place a copy of the model on each GPU,
    # each getting a slice of the inputs.
    for i, gpu_id in enumerate(target_gpu_ids):
        with ops.device('/gpu:%d' % gpu_id):
            with ops.name_scope('replica_%d' % gpu_id):
                inputs = []
                # Retrieve a slice of the input.
                for x in model.inputs:
                    input_shape = tuple(x.get_shape().as_list())[1:]
                    slice_i = Lambda(get_slice,
                                     output_shape=input_shape,
                                     arguments={
                                         'i': i,
                                         'parts': num_gpus
                                     })(x)
                    inputs.append(slice_i)

                # Apply model on slice
                # (creating a model replica on the target device).
                outputs = model(inputs)
                if not isinstance(outputs, list):
                    outputs = [outputs]

                # Save the outputs for merging back together later.
                for o in range(len(outputs)):
                    all_outputs[o].append(outputs[o])

    # Merge outputs on CPU.
    with ops.device('/cpu:0'):
        merged = []
        for name, outputs in zip(model.output_names, all_outputs):
            merged.append(concatenate(outputs, axis=0, name=name))
        return Model(model.inputs, merged)
Exemplo n.º 2
0
def multi_gpu_model(model, gpus):
  """Replicates a model on different GPUs.

  Specifically, this function implements single-machine
  multi-GPU data parallelism. It works in the following way:

  - Divide the model's input(s) into multiple sub-batches.
  - Apply a model copy on each sub-batch. Every model copy
      is executed on a dedicated GPU.
  - Concatenate the results (on CPU) into one big batch.

  E.g. if your `batch_size` is 64 and you use `gpus=2`,
  then we will divide the input into 2 sub-batches of 32 samples,
  process each sub-batch on one GPU, then return the full
  batch of 64 processed samples.

  This induces quasi-linear speedup on up to 8 GPUs.

  This function is only available with the TensorFlow backend
  for the time being.

  Arguments:
      model: A Keras model instance. To avoid OOM errors,
          this model could have been built on CPU, for instance
          (see usage example below).
      gpus: Integer >= 2, number of on GPUs on which to create
          model replicas.

  Returns:
      A Keras `Model` instance which can be used just like the initial
      `model` argument, but which distributes its workload on multiple GPUs.

  Example:

  ```python
      import tensorflow as tf
      from keras.applications import Xception
      from keras.utils import multi_gpu_model
      import numpy as np

      num_samples = 1000
      height = 224
      width = 224
      num_classes = 1000

      # Instantiate the base model (or "template" model).
      # We recommend doing this with under a CPU device scope,
      # so that the model's weights are hosted on CPU memory.
      # Otherwise they may end up hosted on a GPU, which would
      # complicate weight sharing.
      with tf.device('/cpu:0'):
          model = Xception(weights=None,
                           input_shape=(height, width, 3),
                           classes=num_classes)

      # Replicates the model on 8 GPUs.
      # This assumes that your machine has 8 available GPUs.
      parallel_model = multi_gpu_model(model, gpus=8)
      parallel_model.compile(loss='categorical_crossentropy',
                             optimizer='rmsprop')

      # Generate dummy data.
      x = np.random.random((num_samples, height, width, 3))
      y = np.random.random((num_samples, num_classes))

      # This `fit` call will be distributed on 8 GPUs.
      # Since the batch size is 256, each GPU will process 32 samples.
      parallel_model.fit(x, y, epochs=20, batch_size=256)

      # Save model via the template model (which shares the same weights):
      model.save('my_model.h5')
  ```

  Raises:
    ValueError: if the `gpus` argument does not match available devices.
  """
  # pylint: disable=g-import-not-at-top
  from tensorflow.python.keras._impl.keras.layers.core import Lambda
  from tensorflow.python.keras._impl.keras.layers.merge import concatenate

  if isinstance(gpus, (list, tuple)):
    if len(gpus) <= 1:
      raise ValueError('For multi-gpu usage to be effective, '
                       'call `multi_gpu_model` with `len(gpus) >= 2`. '
                       'Received: `gpus=%s`' % gpus)
    num_gpus = len(gpus)
    target_gpu_ids = gpus
  else:
    if gpus <= 1:
      raise ValueError('For multi-gpu usage to be effective, '
                       'call `multi_gpu_model` with `gpus >= 2`. '
                       'Received: `gpus=%s`' % gpus)
    num_gpus = gpus
    target_gpu_ids = range(num_gpus)

  target_devices = ['/cpu:0'] + ['/gpu:%d' % i for i in target_gpu_ids]
  available_devices = _get_available_devices()
  available_devices = [
      _normalize_device_name(name) for name in available_devices
  ]
  for device in target_devices:
    if device not in available_devices:
      raise ValueError('To call `multi_gpu_model` with `gpus=%s`, '
                       'we expect the following devices to be available: %s. '
                       'However this machine only has: %s. '
                       'Try reducing `gpus`.' % (gpus, target_devices,
                                                 available_devices))

  def get_slice(data, i, parts):
    """Slice an array into `parts` slices and return slice `i`.

    Arguments:
      data: array to slice.
      i: index of slice to return.
      parts: number of slices to make.

    Returns:
      Slice `i` of `data`.
    """
    shape = array_ops.shape(data)
    batch_size = shape[:1]
    input_shape = shape[1:]
    step = batch_size // parts
    if i == num_gpus - 1:
      size = batch_size - step * i
    else:
      size = step
    size = array_ops.concat([size, input_shape], axis=0)
    stride = array_ops.concat([step, input_shape * 0], axis=0)
    start = stride * i
    return array_ops.slice(data, start, size)

  all_outputs = []
  for i in range(len(model.outputs)):
    all_outputs.append([])

  # Place a copy of the model on each GPU,
  # each getting a slice of the inputs.
  for i, gpu_id in enumerate(target_gpu_ids):
    with ops.device('/gpu:%d' % gpu_id):
      with ops.name_scope('replica_%d' % gpu_id):
        inputs = []
        # Retrieve a slice of the input.
        for x in model.inputs:
          input_shape = tuple(x.get_shape().as_list())[1:]
          slice_i = Lambda(
              get_slice,
              output_shape=input_shape,
              arguments={
                  'i': i,
                  'parts': num_gpus
              })(
                  x)
          inputs.append(slice_i)

        # Apply model on slice
        # (creating a model replica on the target device).
        outputs = model(inputs)
        if not isinstance(outputs, list):
          outputs = [outputs]

        # Save the outputs for merging back together later.
        for o in range(len(outputs)):
          all_outputs[o].append(outputs[o])

  # Merge outputs on CPU.
  with ops.device('/cpu:0'):
    merged = []
    for name, outputs in zip(model.output_names, all_outputs):
      merged.append(concatenate(outputs, axis=0, name=name))
    return Model(model.inputs, merged)