Exemplo n.º 1
0
  def test_multi_inputs_multi_outputs(self):
    np.random.seed(1337)
    (a_train, c_train), (a_test, c_test) = testing_utils.get_test_data(
        train_samples=200, test_samples=100, input_shape=(32,), num_classes=3)
    (b_train, d_train), (b_test, d_test) = testing_utils.get_test_data(
        train_samples=200, test_samples=100, input_shape=(32,), num_classes=2)
    c_train = keras.utils.to_categorical(c_train)
    c_test = keras.utils.to_categorical(c_test)
    d_train = keras.utils.to_categorical(d_train)
    d_test = keras.utils.to_categorical(d_test)

    def train_input_fn():
      input_dict = {
          'input_a':
              ops.convert_to_tensor(
                  np.array(a_train, dtype=np.float32), dtype=dtypes.float32),
          'input_b':
              ops.convert_to_tensor(
                  np.array(b_train, dtype=np.float32), dtype=dtypes.float32)
      }
      output_dict = {
          'dense_2':
              ops.convert_to_tensor(
                  np.array(c_train, dtype=np.float32), dtype=dtypes.float32),
          'dense_3':
              ops.convert_to_tensor(
                  np.array(d_train, dtype=np.float32), dtype=dtypes.float32)
      }
      return input_dict, output_dict

    def evaluate_input_fn():
      input_dict = {
          'input_a':
              ops.convert_to_tensor(
                  np.array(a_test, dtype=np.float32), dtype=dtypes.float32),
          'input_b':
              ops.convert_to_tensor(
                  np.array(b_test, dtype=np.float32), dtype=dtypes.float32)
      }
      output_dict = {
          'dense_2':
              ops.convert_to_tensor(
                  np.array(c_test, dtype=np.float32), dtype=dtypes.float32),
          'dense_3':
              ops.convert_to_tensor(
                  np.array(d_test, dtype=np.float32), dtype=dtypes.float32)
      }
      return input_dict, output_dict

    with self.test_session():
      model = multi_inputs_multi_outputs_model()
      est_keras = keras.estimator.model_to_estimator(
          keras_model=model, model_dir=tempfile.mkdtemp(dir=self._base_dir))
      est_keras.train(input_fn=train_input_fn, steps=200 * 10 / 16)
      eval_results = est_keras.evaluate(input_fn=evaluate_input_fn, steps=1)
      self.assertGreater(eval_results['accuracy_dense_2'], 0.5)
      self.assertGreater(eval_results['accuracy_dense_3'], 0.5)
Exemplo n.º 2
0
  def test_image_classification_declarative(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(8, 8, 3),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      model = keras.models.Sequential()
      model.add(keras.layers.Conv2D(
          8, 3,
          activation='relu',
          input_shape=x_train.shape[1:]))
      model.add(keras.layers.BatchNormalization())
      model.add(keras.layers.Conv2D(
          8, 3,
          padding='same',
          activation='relu'))
      model.add(keras.layers.GlobalMaxPooling2D())
      model.add(keras.layers.Dense(y_train.shape[-1], activation='softmax'))
      model.compile(loss='categorical_crossentropy',
                    optimizer='adam',
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.85)
Exemplo n.º 3
0
def get_resource_for_simple_model(is_sequential, is_evaluate):
  model = simple_sequential_model(
  ) if is_sequential else simple_functional_model()
  if is_sequential:
    model.build()
  input_name = model.input_names[0]
  np.random.seed(_RANDOM_SEED)
  (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
      train_samples=_TRAIN_SIZE,
      test_samples=50,
      input_shape=_INPUT_SIZE,
      num_classes=_NUM_CLASS)
  y_train = keras.utils.to_categorical(y_train)
  y_test = keras.utils.to_categorical(y_test)

  train_input_fn = numpy_io.numpy_input_fn(
      x={input_name: x_train},
      y=y_train,
      shuffle=False,
      num_epochs=None,
      batch_size=16)

  evaluate_input_fn = numpy_io.numpy_input_fn(
      x={input_name: x_test}, y=y_test, num_epochs=1, shuffle=False)

  predict_input_fn = numpy_io.numpy_input_fn(
      x={input_name: x_test}, num_epochs=1, shuffle=False)

  inference_input_fn = evaluate_input_fn if is_evaluate else predict_input_fn

  return model, (x_train, y_train), (x_test,
                                     y_test), train_input_fn, inference_input_fn
Exemplo n.º 4
0
  def test_image_classification_sequential(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), _ = testing_utils.get_test_data(
          train_samples=100,
          test_samples=0,
          input_shape=(12, 12, 3),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)

      model = keras.models.Sequential()
      model.add(keras.layers.Conv2D(
          4, 3,
          padding='same',
          activation='relu',
          input_shape=x_train.shape[1:]))
      model.add(keras.layers.Conv2D(
          8, 3,
          padding='same',
          activation='relu'))
      model.add(keras.layers.Conv2D(
          16, 3,
          padding='same',
          activation='relu'))
      model.add(keras.layers.Flatten())
      model.add(keras.layers.Dense(y_train.shape[-1], activation='softmax'))
      model.compile(loss='categorical_crossentropy',
                    optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.8),
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_train, y_train),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.7)
Exemplo n.º 5
0
  def test_video_classification_functional(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(4, 8, 8, 3),
          num_classes=3)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      inputs = keras.layers.Input(shape=x_train.shape[1:])
      x = keras.layers.TimeDistributed(
          keras.layers.Conv2D(4, 3, activation='relu'))(inputs)
      x = keras.layers.BatchNormalization()(x)
      x = keras.layers.TimeDistributed(keras.layers.GlobalMaxPooling2D())(x)
      x = keras.layers.Conv1D(8, 3, activation='relu')(x)
      x = keras.layers.Flatten()(x)
      outputs = keras.layers.Dense(y_train.shape[-1], activation='softmax')(x)

      model = keras.models.Model(inputs, outputs)
      model.compile(loss='categorical_crossentropy',
                    optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.8),
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.70)
Exemplo n.º 6
0
  def test_temporal_sample_weights(self):
    num_classes = 5
    weighted_class = 3
    train_samples = 1000
    test_samples = 1000
    input_dim = 5
    timesteps = 3

    model = keras.models.Sequential()
    model.add(
        keras.layers.TimeDistributed(
            keras.layers.Dense(num_classes),
            input_shape=(timesteps, input_dim)))
    model.add(keras.layers.Activation('softmax'))

    np.random.seed(1337)
    (_, y_train), _ = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=test_samples,
        input_shape=(input_dim,),
        num_classes=num_classes)
    int_y_train = y_train.copy()
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)

    class_weight = dict([(i, 1.) for i in range(num_classes)])
    class_weight[weighted_class] = 2.

    sample_weight = np.ones((y_train.shape[0]))
    sample_weight[int_y_train == weighted_class] = 2.
    with self.assertRaises(ValueError):
      model.compile(
          loss='binary_crossentropy',
          optimizer=RMSPropOptimizer(learning_rate=0.001),
          sample_weight_mode='temporal')
Exemplo n.º 7
0
  def test_invalid_ionames_error(self):
    (x_train, y_train), (_, _) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=100,
        input_shape=(10,),
        num_classes=2)
    y_train = keras.utils.to_categorical(y_train)

    def invald_input_name_input_fn():
      input_dict = {'invalid_input_name': x_train}
      return input_dict, y_train

    def invald_output_name_input_fn():
      input_dict = {'input_1': x_train}
      output_dict = {'invalid_output_name': y_train}
      return input_dict, output_dict

    model = simple_functional_model()
    model.compile(
        loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    est_keras = keras.estimator.model_to_estimator(
        keras_model=model, config=self._config)

    with self.test_session():
      with self.assertRaises(ValueError):
        est_keras.train(input_fn=invald_input_name_input_fn, steps=100)

      with self.assertRaises(ValueError):
        est_keras.train(input_fn=invald_output_name_input_fn, steps=100)
Exemplo n.º 8
0
  def test_vector_classification_shared_model(self):
    # Test that functional models that feature internal updates
    # and internal losses can be shared.
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(10,),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      inputs = keras.layers.Input(x_train.shape[1:])
      x = keras.layers.Dense(16,
                             activation='relu',
                             kernel_regularizer=keras.regularizers.l2(1e-5),
                             bias_regularizer=keras.regularizers.l2(1e-5),
                             input_shape=x_train.shape[1:])(inputs)
      x = keras.layers.BatchNormalization()(x)
      base_model = keras.models.Model(inputs, x)

      x = keras.layers.Input(x_train.shape[1:])
      y = base_model(x)
      y = keras.layers.Dense(y_train.shape[-1], activation='softmax')(y)
      model = keras.models.Model(x, y)
      model.compile(loss='categorical_crossentropy',
                    optimizer='rmsprop',
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.85)
Exemplo n.º 9
0
  def test_TerminateOnNaN(self):
    np.random.seed(1337)
    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=TRAIN_SAMPLES,
        test_samples=TEST_SAMPLES,
        input_shape=(INPUT_DIM,),
        num_classes=NUM_CLASSES)

    y_test = keras.utils.to_categorical(y_test)
    y_train = keras.utils.to_categorical(y_train)
    cbks = [keras.callbacks.TerminateOnNaN()]
    model = keras.models.Sequential()
    initializer = keras.initializers.Constant(value=1e5)
    for _ in range(5):
      model.add(keras.layers.Dense(2,
                                   input_dim=INPUT_DIM,
                                   activation='relu',
                                   kernel_initializer=initializer))
    model.add(keras.layers.Dense(NUM_CLASSES))
    model.compile(loss='mean_squared_error',
                  optimizer='rmsprop')

    history = model.fit(x_train, y_train, batch_size=BATCH_SIZE,
                        validation_data=(x_test, y_test),
                        callbacks=cbks, epochs=20)
    loss = history.history['loss']
    assert len(loss) == 1
    assert loss[0] == np.inf
Exemplo n.º 10
0
def _test_optimizer(optimizer, target=0.75):
  np.random.seed(1337)
  (x_train, y_train), _ = testing_utils.get_test_data(train_samples=1000,
                                                      test_samples=200,
                                                      input_shape=(10,),
                                                      num_classes=2)
  y_train = keras.utils.to_categorical(y_train)
  model = _get_model(x_train.shape[1], 20, y_train.shape[1])
  model.compile(loss='categorical_crossentropy',
                optimizer=optimizer,
                metrics=['accuracy'])
  history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
  assert history.history['acc'][-1] >= target
  config = keras.optimizers.serialize(optimizer)
  optim = keras.optimizers.deserialize(config)
  new_config = keras.optimizers.serialize(optim)
  new_config['class_name'] = new_config['class_name'].lower()
  assert config == new_config

  # Test constraints.
  model = keras.models.Sequential()
  dense = keras.layers.Dense(10,
                             input_shape=(x_train.shape[1],),
                             kernel_constraint=lambda x: 0. * x + 1.,
                             bias_constraint=lambda x: 0. * x + 2.,
                             activation='relu')
  model.add(dense)
  model.add(keras.layers.Dense(y_train.shape[1], activation='softmax'))
  model.compile(loss='categorical_crossentropy',
                optimizer=optimizer,
                metrics=['accuracy'])
  model.train_on_batch(x_train[:10], y_train[:10])
  kernel, bias = dense.get_weights()
  np.testing.assert_allclose(kernel, 1., atol=1e-3)
  np.testing.assert_allclose(bias, 2., atol=1e-3)
Exemplo n.º 11
0
  def test_invalid_loss_or_metrics(self):
    num_classes = 5
    train_samples = 1000
    test_samples = 1000
    input_dim = 5

    model = keras.models.Sequential()
    model.add(keras.layers.Dense(10, input_shape=(input_dim,)))
    model.add(keras.layers.Activation('relu'))
    model.add(keras.layers.Dense(num_classes))
    model.add(keras.layers.Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=RMSPropOptimizer(learning_rate=0.001))
    np.random.seed(1337)

    (x_train, y_train), (_, _) = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=test_samples,
        input_shape=(input_dim,),
        num_classes=num_classes)

    with self.assertRaises(ValueError):
      model.fit(x_train, np.concatenate([y_train, y_train], axis=-1))

    with self.assertRaises(TypeError):
      model.compile(loss='categorical_crossentropy',
                    optimizer=RMSPropOptimizer(learning_rate=0.001),
                    metrics=set(0))

    with self.assertRaises(ValueError):
      model.compile(loss=None,
                    optimizer='rms')
Exemplo n.º 12
0
  def test_LearningRateScheduler(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)
      model = keras.models.Sequential()
      model.add(
          keras.layers.Dense(
              NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
      model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))
      model.compile(
          loss='categorical_crossentropy',
          optimizer='sgd',
          metrics=['accuracy'])

      cbks = [keras.callbacks.LearningRateScheduler(lambda x: 1. / (1. + x))]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=5,
          verbose=0)
      assert (float(keras.backend.get_value(model.optimizer.lr)) - 0.2
             ) < keras.backend.epsilon()
Exemplo n.º 13
0
  def test_vector_classification_declarative(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(10,),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      model = keras.models.Sequential([
          keras.layers.Dense(16,
                             activation='relu',
                             input_shape=x_train.shape[1:]),
          keras.layers.Dropout(0.1),
          keras.layers.Dense(y_train.shape[-1], activation='softmax')
      ])
      model.compile(loss='categorical_crossentropy',
                    optimizer='rmsprop',
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.85)
Exemplo n.º 14
0
  def test_sample_weights(self):
    num_classes = 5
    batch_size = 5
    epochs = 5
    weighted_class = 3
    train_samples = 3000
    test_samples = 3000
    input_dim = 5

    model = keras.models.Sequential()
    model.add(keras.layers.Dense(10, input_shape=(input_dim,)))
    model.add(keras.layers.Activation('relu'))
    model.add(keras.layers.Dense(num_classes))
    model.add(keras.layers.Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=RMSPropOptimizer(learning_rate=0.001))

    np.random.seed(43)
    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=test_samples,
        input_shape=(input_dim,),
        num_classes=num_classes)
    int_y_test = y_test.copy()
    int_y_train = y_train.copy()
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    test_ids = np.where(int_y_test == np.array(weighted_class))[0]

    class_weight = dict([(i, 1.) for i in range(num_classes)])
    class_weight[weighted_class] = 2.

    sample_weight = np.ones((y_train.shape[0]))
    sample_weight[int_y_train == weighted_class] = 2.

    model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=epochs // 3,
        verbose=0,
        sample_weight=sample_weight)
    model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=epochs // 3,
        verbose=0,
        sample_weight=sample_weight,
        validation_split=0.1)
    model.train_on_batch(
        x_train[:batch_size],
        y_train[:batch_size],
        sample_weight=sample_weight[:batch_size])
    model.test_on_batch(
        x_train[:batch_size],
        y_train[:batch_size],
        sample_weight=sample_weight[:batch_size])
Exemplo n.º 15
0
  def test_multi_inputs_multi_outputs(self):
    np.random.seed(_RANDOM_SEED)
    (a_train, c_train), (a_test, c_test) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(16,),
        num_classes=3)
    np.random.seed(_RANDOM_SEED)
    (b_train, d_train), (b_test, d_test) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(16,),
        num_classes=2)
    np.random.seed(_RANDOM_SEED)
    (input_m_train, _), (input_m_test, _) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(8,),
        num_classes=2)

    c_train = keras.utils.to_categorical(c_train)
    c_test = keras.utils.to_categorical(c_test)
    d_train = keras.utils.to_categorical(d_train)
    d_test = keras.utils.to_categorical(d_test)

    def train_input_fn():
      input_dict = {'input_a': a_train, 'input_b': b_train,
                    'input_m': input_m_train > 0}
      output_dict = {'dense_2': c_train, 'dense_3': d_train}
      return input_dict, output_dict

    def eval_input_fn():
      input_dict = {'input_a': a_test, 'input_b': b_test,
                    'input_m': input_m_test > 0}
      output_dict = {'dense_2': c_test, 'dense_3': d_test}
      return input_dict, output_dict

    with self.test_session():
      model = multi_inputs_multi_outputs_model()
      est_keras = keras.estimator.model_to_estimator(
          keras_model=model, config=self._config)
      before_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
      after_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      self.assertLess(after_eval_results['loss'], before_eval_results['loss'])
Exemplo n.º 16
0
  def test_stop_training_csv(self):
    # Test that using the CSVLogger callback with the TerminateOnNaN callback
    # does not result in invalid CSVs.
    np.random.seed(1337)
    tmpdir = self.get_temp_dir()
    self.addCleanup(shutil.rmtree, tmpdir)

    with self.test_session():
      fp = os.path.join(tmpdir, 'test.csv')
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)

      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)
      cbks = [keras.callbacks.TerminateOnNaN(), keras.callbacks.CSVLogger(fp)]
      model = keras.models.Sequential()
      for _ in range(5):
        model.add(keras.layers.Dense(2, input_dim=INPUT_DIM, activation='relu'))
      model.add(keras.layers.Dense(NUM_CLASSES, activation='linear'))
      model.compile(loss='mean_squared_error',
                    optimizer='rmsprop')

      def data_generator():
        i = 0
        max_batch_index = len(x_train) // BATCH_SIZE
        tot = 0
        while 1:
          if tot > 3 * len(x_train):
            yield (np.ones([BATCH_SIZE, INPUT_DIM]) * np.nan,
                   np.ones([BATCH_SIZE, NUM_CLASSES]) * np.nan)
          else:
            yield (x_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE],
                   y_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE])
          i += 1
          tot += 1
          i %= max_batch_index

      history = model.fit_generator(data_generator(),
                                    len(x_train) // BATCH_SIZE,
                                    validation_data=(x_test, y_test),
                                    callbacks=cbks,
                                    epochs=20)
      loss = history.history['loss']
      assert len(loss) > 1
      assert loss[-1] == np.inf or np.isnan(loss[-1])

      values = []
      with open(fp) as f:
        for x in csv.reader(f):
          # In windows, due to \r\n line ends we may end up reading empty lines
          # after each line. Skip empty lines.
          if x:
            values.append(x)
      assert 'nan' in values[-1], 'The last epoch was not logged.'
Exemplo n.º 17
0
def get_data():
  (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
      train_samples=10,
      test_samples=10,
      input_shape=(DATA_DIM,),
      num_classes=NUM_CLASSES)
  y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)
  y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)
  return (x_train, y_train), (x_test, y_test)
Exemplo n.º 18
0
  def test_ReduceLROnPlateau(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      def make_model():
        np.random.seed(1337)
        model = keras.models.Sequential()
        model.add(
            keras.layers.Dense(
                NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
        model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))

        model.compile(
            loss='categorical_crossentropy',
            optimizer=keras.optimizers.SGD(lr=0.1),
            metrics=['accuracy'])
        return model

      model = make_model()
      # This should reduce the LR after the first epoch (due to high epsilon).
      cbks = [
          keras.callbacks.ReduceLROnPlateau(
              monitor='val_loss',
              factor=0.1,
              epsilon=10,
              patience=1,
              cooldown=5)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=5,
          verbose=0)
      self.assertAllClose(
          float(keras.backend.get_value(model.optimizer.lr)),
          0.01,
          atol=1e-4)
Exemplo n.º 19
0
def get_resource_for_simple_model(model_type='sequential',
                                  is_evaluate=False,):
  if model_type == 'sequential':
    model = simple_sequential_model()
    model.build()
  elif model_type == 'subclass':
    model = simple_subclassed_model()
  else:
    assert model_type == 'functional'
    model = simple_functional_model()

  if model_type == 'subclass':
    input_name = 'input_1'
    output_name = 'output_1'
  else:
    input_name = model.input_names[0]
    output_name = model.output_names[0]

  np.random.seed(_RANDOM_SEED)
  (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
      train_samples=_TRAIN_SIZE,
      test_samples=50,
      input_shape=_INPUT_SIZE,
      num_classes=_NUM_CLASS)
  y_train = keras.utils.to_categorical(y_train)
  y_test = keras.utils.to_categorical(y_test)

  train_input_fn = numpy_io.numpy_input_fn(
      x=randomize_io_type(x_train, input_name),
      y=randomize_io_type(y_train, output_name),
      shuffle=False,
      num_epochs=None,
      batch_size=16)

  evaluate_input_fn = numpy_io.numpy_input_fn(
      x=randomize_io_type(x_test, input_name),
      y=randomize_io_type(y_test, output_name),
      num_epochs=1, shuffle=False)

  predict_input_fn = numpy_io.numpy_input_fn(
      x=randomize_io_type(x_test, input_name), num_epochs=1, shuffle=False)

  inference_input_fn = evaluate_input_fn if is_evaluate else predict_input_fn

  return model, (x_train, y_train), (x_test,
                                     y_test), train_input_fn, inference_input_fn
Exemplo n.º 20
0
  def test_LambdaCallback(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)
      model = keras.models.Sequential()
      model.add(
          keras.layers.Dense(
              NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
      model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))
      model.compile(
          loss='categorical_crossentropy',
          optimizer='sgd',
          metrics=['accuracy'])

      # Start an arbitrary process that should run during model
      # training and be terminated after training has completed.
      e = threading.Event()

      def target():
        e.wait()

      t = threading.Thread(target=target)
      t.start()
      cleanup_callback = keras.callbacks.LambdaCallback(
          on_train_end=lambda logs: e.set())

      cbks = [cleanup_callback]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=5,
          verbose=0)
      t.join()
      assert not t.is_alive()
Exemplo n.º 21
0
  def test_invalid_ionames_error(self):
    np.random.seed(1337)
    (x_train, y_train), (_, _) = testing_utils.get_test_data(
        train_samples=200, test_samples=100, input_shape=(10,), num_classes=2)
    y_train = keras.utils.to_categorical(y_train)

    def invald_input_name_input_fn():
      input_dict = {
          'invalid_input_name':
              ops.convert_to_tensor(
                  np.array(x_train, dtype=np.float32), dtype=dtypes.float32),
      }
      output = ops.convert_to_tensor(
          np.array(y_train, dtype=np.float32), dtype=dtypes.float32)
      return input_dict, output

    def invald_output_name_input_fn():
      input_dict = {
          'input_1':
              ops.convert_to_tensor(
                  np.array(x_train, dtype=np.float32), dtype=dtypes.float32),
      }
      output_dict = {
          'invalid_output_name':
              ops.convert_to_tensor(
                  np.array(y_train, dtype=np.float32), dtype=dtypes.float32),
      }
      return input_dict, output_dict

    model = simple_functional_model()
    model.compile(
        loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    est_keras = keras.estimator.model_to_estimator(
        keras_model=model, model_dir=tempfile.mkdtemp(dir=self._base_dir))

    with self.test_session():
      with self.assertRaises(ValueError):
        est_keras.train(input_fn=invald_input_name_input_fn, steps=100)

      with self.assertRaises(ValueError):
        est_keras.train(input_fn=invald_output_name_input_fn, steps=100)
Exemplo n.º 22
0
  def test_EarlyStopping(self):
    with self.test_session():
      np.random.seed(123)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)
      model = keras.models.Sequential()
      model.add(
          keras.layers.Dense(
              NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
      model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))
      model.compile(
          loss='categorical_crossentropy',
          optimizer='rmsprop',
          metrics=['accuracy'])

      cases = [
          ('max', 'val_acc'),
          ('min', 'val_loss'),
          ('auto', 'val_acc'),
          ('auto', 'loss'),
          ('unknown', 'unknown')
      ]
      for mode, monitor in cases:
        patience = 0
        cbks = [
            keras.callbacks.EarlyStopping(
                patience=patience, monitor=monitor, mode=mode)
        ]
        model.fit(
            x_train,
            y_train,
            batch_size=BATCH_SIZE,
            validation_data=(x_test, y_test),
            callbacks=cbks,
            epochs=5,
            verbose=0)
Exemplo n.º 23
0
  def test_temporal_classification_sequential(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), _ = testing_utils.get_test_data(
          train_samples=100,
          test_samples=0,
          input_shape=(4, 10),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)

      model = keras.models.Sequential()
      model.add(keras.layers.LSTM(5, return_sequences=True,
                                  input_shape=x_train.shape[1:]))
      model.add(keras.layers.GRU(y_train.shape[-1], activation='softmax'))
      model.compile(loss='categorical_crossentropy',
                    optimizer=keras.optimizers.Adam(lr=0.1),
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=15, batch_size=16,
                          validation_data=(x_train, y_train),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.7)
Exemplo n.º 24
0
  def test_using_tf_layers_in_keras_sequential_model(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), _ = testing_utils.get_test_data(
          train_samples=100,
          test_samples=0,
          input_shape=(10,),
          num_classes=2)

      model = keras.models.Sequential()
      model.add(tf_core_layers.Dense(32, activation=nn.relu, input_shape=(10,)))
      model.add(tf_core_layers.Dense(2, activation=nn.softmax))
      model.summary()

      y_train = keras.utils.to_categorical(y_train)
      model.compile(loss='categorical_crossentropy',
                    optimizer=keras.optimizers.Adam(lr=0.1),
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_train, y_train),
                          verbose=0)
      self.assertGreater(history.history['val_acc'][-1], 0.7)
Exemplo n.º 25
0
def get_resource_for_simple_model(is_sequential, is_evaluate):
  model = simple_sequential_model(
  ) if is_sequential else simple_functional_model()
  if is_sequential:
    model.build()
  input_name = model.input_names[0]

  np.random.seed(1337)
  (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
      train_samples=200,
      test_samples=100,
      input_shape=(14, 14, 3),
      num_classes=3)
  y_train = keras.utils.to_categorical(y_train)
  y_test = keras.utils.to_categorical(y_test)

  train_input_fn = numpy_io.numpy_input_fn(
      x={input_name: np.array(x_train, dtype=np.float32)},
      y=np.array(y_train, dtype=np.float32),
      shuffle=False,
      num_epochs=None,
      batch_size=16)

  evaluate_input_fn = numpy_io.numpy_input_fn(
      x={input_name: np.array(x_test, dtype=np.float32)},
      y=np.array(y_test, dtype=np.float32),
      num_epochs=1,
      shuffle=False)

  predict_input_fn = numpy_io.numpy_input_fn(
      x={input_name: np.array(x_test, dtype=np.float32)},
      num_epochs=1,
      shuffle=False)

  inference_input_fn = evaluate_input_fn if is_evaluate else predict_input_fn

  return model, (x_train, y_train), (x_test,
                                     y_test), train_input_fn, inference_input_fn
Exemplo n.º 26
0
  def test_vector_classification_functional(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), _ = testing_utils.get_test_data(
          train_samples=100,
          test_samples=0,
          input_shape=(20,),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)

      inputs = keras.layers.Input(shape=x_train.shape[1:])
      x = keras.layers.Dense(16, activation='relu')(inputs)
      x = keras.layers.Dropout(0.1)(x)
      outputs = keras.layers.Dense(y_train.shape[-1], activation='softmax')(x)

      model = keras.models.Model(inputs, outputs)
      model.compile(loss='categorical_crossentropy',
                    optimizer=keras.optimizers.Adam(lr=0.1),
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_train, y_train),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.7)
Exemplo n.º 27
0
  def test_TensorBoard_with_ReduceLROnPlateau(self):
    with self.test_session():
      temp_dir = self.get_temp_dir()
      self.addCleanup(shutil.rmtree, temp_dir)

      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      model = keras.models.Sequential()
      model.add(
          keras.layers.Dense(
              NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
      model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))
      model.compile(
          loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'])

      cbks = [
          keras.callbacks.ReduceLROnPlateau(
              monitor='val_loss', factor=0.5, patience=4, verbose=1),
          keras.callbacks.TensorBoard(log_dir=temp_dir)
      ]

      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=2,
          verbose=0)

      assert os.path.exists(temp_dir)
Exemplo n.º 28
0
  def test_using_tf_layers_in_keras_functional_model(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(10,),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      inputs = tf_base_layers.Input(shape=(10,))
      x = tf_core_layers.Dense(32, activation=nn.relu)(inputs)
      outputs = tf_core_layers.Dense(2, activation=nn.softmax)(x)
      model = keras.models.Model(inputs, outputs)
      model.summary()

      model.compile(loss='categorical_crossentropy',
                    optimizer='adam',
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=0)
      self.assertGreater(history.history['val_acc'][-1], 0.85)
Exemplo n.º 29
0
    def test_multi_inputs_multi_outputs(self):
        np.random.seed(1337)
        (a_train,
         c_train), (a_test,
                    c_test) = testing_utils.get_test_data(train_samples=200,
                                                          test_samples=100,
                                                          input_shape=(32, ),
                                                          num_classes=3)
        (b_train,
         d_train), (b_test,
                    d_test) = testing_utils.get_test_data(train_samples=200,
                                                          test_samples=100,
                                                          input_shape=(32, ),
                                                          num_classes=2)
        c_train = keras.utils.to_categorical(c_train)
        c_test = keras.utils.to_categorical(c_test)
        d_train = keras.utils.to_categorical(d_train)
        d_test = keras.utils.to_categorical(d_test)

        def train_input_fn():
            input_dict = {
                'input_a':
                ops.convert_to_tensor(np.array(a_train, dtype=np.float32),
                                      dtype=dtypes.float32),
                'input_b':
                ops.convert_to_tensor(np.array(b_train, dtype=np.float32),
                                      dtype=dtypes.float32)
            }
            output_dict = {
                'dense_2':
                ops.convert_to_tensor(np.array(c_train, dtype=np.float32),
                                      dtype=dtypes.float32),
                'dense_3':
                ops.convert_to_tensor(np.array(d_train, dtype=np.float32),
                                      dtype=dtypes.float32)
            }
            return input_dict, output_dict

        def evaluate_input_fn():
            input_dict = {
                'input_a':
                ops.convert_to_tensor(np.array(a_test, dtype=np.float32),
                                      dtype=dtypes.float32),
                'input_b':
                ops.convert_to_tensor(np.array(b_test, dtype=np.float32),
                                      dtype=dtypes.float32)
            }
            output_dict = {
                'dense_2':
                ops.convert_to_tensor(np.array(c_test, dtype=np.float32),
                                      dtype=dtypes.float32),
                'dense_3':
                ops.convert_to_tensor(np.array(d_test, dtype=np.float32),
                                      dtype=dtypes.float32)
            }
            return input_dict, output_dict

        with self.test_session():
            model = multi_inputs_multi_outputs_model()
            est_keras = keras.estimator.model_to_estimator(
                keras_model=model,
                model_dir=tempfile.mkdtemp(dir=self._base_dir))
            est_keras.train(input_fn=train_input_fn, steps=200 * 10 / 16)
            eval_results = est_keras.evaluate(input_fn=evaluate_input_fn,
                                              steps=1)
            self.assertGreater(eval_results['accuracy_dense_2'], 0.5)
            self.assertGreater(eval_results['accuracy_dense_3'], 0.5)
Exemplo n.º 30
0
  def test_TensorBoard_multi_input_output(self):
    np.random.seed(1337)
    tmpdir = self.get_temp_dir()
    self.addCleanup(shutil.rmtree, tmpdir)

    with self.test_session():
      filepath = os.path.join(tmpdir, 'logs')

      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      def data_generator(train):
        if train:
          max_batch_index = len(x_train) // BATCH_SIZE
        else:
          max_batch_index = len(x_test) // BATCH_SIZE
        i = 0
        while 1:
          if train:
            # simulate multi-input/output models
            yield ([x_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]] * 2,
                   [y_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]] * 2)
          else:
            yield ([x_test[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]] * 2,
                   [y_test[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]] * 2)
          i += 1
          i %= max_batch_index

      inp1 = keras.Input((INPUT_DIM,))
      inp2 = keras.Input((INPUT_DIM,))
      inp = keras.layers.add([inp1, inp2])
      hidden = keras.layers.Dense(2, activation='relu')(inp)
      hidden = keras.layers.Dropout(0.1)(hidden)
      output1 = keras.layers.Dense(NUM_CLASSES, activation='softmax')(hidden)
      output2 = keras.layers.Dense(NUM_CLASSES, activation='softmax')(hidden)
      model = keras.models.Model([inp1, inp2], [output1, output2])
      model.compile(loss='categorical_crossentropy',
                    optimizer='sgd',
                    metrics=['accuracy'])

      # we must generate new callbacks for each test, as they aren't stateless
      def callbacks_factory(histogram_freq):
        return [keras.callbacks.TensorBoard(log_dir=filepath,
                                            histogram_freq=histogram_freq,
                                            write_images=True, write_grads=True,
                                            batch_size=5)]

      # fit without validation data
      model.fit([x_train] * 2, [y_train] * 2, batch_size=BATCH_SIZE,
                callbacks=callbacks_factory(histogram_freq=0), epochs=3)

      # fit with validation data and accuracy
      model.fit([x_train] * 2, [y_train] * 2, batch_size=BATCH_SIZE,
                validation_data=([x_test] * 2, [y_test] * 2),
                callbacks=callbacks_factory(histogram_freq=1), epochs=2)

      # fit generator without validation data
      model.fit_generator(data_generator(True), len(x_train), epochs=2,
                          callbacks=callbacks_factory(histogram_freq=0))

      # fit generator with validation data and accuracy
      model.fit_generator(data_generator(True), len(x_train), epochs=2,
                          validation_data=([x_test] * 2, [y_test] * 2),
                          callbacks=callbacks_factory(histogram_freq=1))
      assert os.path.isdir(filepath)
Exemplo n.º 31
0
  def test_TensorBoard_multi_input_output(self):
    np.random.seed(1337)
    tmpdir = self.get_temp_dir()
    self.addCleanup(shutil.rmtree, tmpdir)

    with self.test_session():
      filepath = os.path.join(tmpdir, 'logs')

      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      def data_generator(train):
        if train:
          max_batch_index = len(x_train) // BATCH_SIZE
        else:
          max_batch_index = len(x_test) // BATCH_SIZE
        i = 0
        while 1:
          if train:
            # simulate multi-input/output models
            yield ([x_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]] * 2,
                   [y_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]] * 2)
          else:
            yield ([x_test[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]] * 2,
                   [y_test[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]] * 2)
          i += 1
          i %= max_batch_index

      inp1 = keras.Input((INPUT_DIM,))
      inp2 = keras.Input((INPUT_DIM,))
      inp = keras.layers.add([inp1, inp2])
      hidden = keras.layers.Dense(2, activation='relu')(inp)
      hidden = keras.layers.Dropout(0.1)(hidden)
      output1 = keras.layers.Dense(NUM_CLASSES, activation='softmax')(hidden)
      output2 = keras.layers.Dense(NUM_CLASSES, activation='softmax')(hidden)
      model = keras.models.Model([inp1, inp2], [output1, output2])
      model.compile(loss='categorical_crossentropy',
                    optimizer='sgd',
                    metrics=['accuracy'])

      # we must generate new callbacks for each test, as they aren't stateless
      def callbacks_factory(histogram_freq):
        return [keras.callbacks.TensorBoard(log_dir=filepath,
                                            histogram_freq=histogram_freq,
                                            write_images=True, write_grads=True,
                                            batch_size=5)]

      # fit without validation data
      model.fit([x_train] * 2, [y_train] * 2, batch_size=BATCH_SIZE,
                callbacks=callbacks_factory(histogram_freq=0), epochs=3)

      # fit with validation data and accuracy
      model.fit([x_train] * 2, [y_train] * 2, batch_size=BATCH_SIZE,
                validation_data=([x_test] * 2, [y_test] * 2),
                callbacks=callbacks_factory(histogram_freq=1), epochs=2)

      # fit generator without validation data
      model.fit_generator(data_generator(True), len(x_train), epochs=2,
                          callbacks=callbacks_factory(histogram_freq=0))

      # fit generator with validation data and accuracy
      model.fit_generator(data_generator(True), len(x_train), epochs=2,
                          validation_data=([x_test] * 2, [y_test] * 2),
                          callbacks=callbacks_factory(histogram_freq=1))
      assert os.path.isdir(filepath)
Exemplo n.º 32
0
  def test_TensorBoard_histogram_freq_must_have_validation_data(self):
    np.random.seed(1337)
    tmpdir = self.get_temp_dir()
    self.addCleanup(shutil.rmtree, tmpdir)

    with self.test_session():
      filepath = os.path.join(tmpdir, 'logs')

      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      def data_generator(train):
        if train:
          max_batch_index = len(x_train) // BATCH_SIZE
        else:
          max_batch_index = len(x_test) // BATCH_SIZE
        i = 0
        while 1:
          if train:
            # simulate multi-input/output models
            yield (x_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE],
                   y_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE])
          else:
            yield (x_test[i * BATCH_SIZE: (i + 1) * BATCH_SIZE],
                   y_test[i * BATCH_SIZE: (i + 1) * BATCH_SIZE])
          i += 1
          i %= max_batch_index

      inp = keras.Input((INPUT_DIM,))
      hidden = keras.layers.Dense(2, activation='relu')(inp)
      hidden = keras.layers.Dropout(0.1)(hidden)
      output = keras.layers.Dense(NUM_CLASSES, activation='softmax')(hidden)
      model = keras.models.Model(inputs=inp, outputs=output)
      model.compile(loss='categorical_crossentropy',
                    optimizer='sgd',
                    metrics=['accuracy'])

      # we must generate new callbacks for each test, as they aren't stateless
      def callbacks_factory(histogram_freq):
        return [keras.callbacks.TensorBoard(
            log_dir=filepath,
            histogram_freq=histogram_freq,
            write_images=True, write_grads=True,
            batch_size=5)]

      # fit w/o validation data should raise ValueError if histogram_freq > 0
      cbs = callbacks_factory(histogram_freq=1)
      with self.assertRaises(ValueError):
        model.fit(
            x_train, y_train, batch_size=BATCH_SIZE, callbacks=cbs, epochs=3)

      for cb in cbs:
        cb.on_train_end()

      # fit generator without validation data should raise ValueError if
      # histogram_freq > 0
      cbs = callbacks_factory(histogram_freq=1)
      with self.assertRaises(ValueError):
        model.fit_generator(
            data_generator(True), len(x_train), epochs=2, callbacks=cbs)

      for cb in cbs:
        cb.on_train_end()

      # fit generator with validation data generator should raise ValueError if
      # histogram_freq > 0
      cbs = callbacks_factory(histogram_freq=1)
      with self.assertRaises(ValueError):
        model.fit_generator(
            data_generator(True),
            len(x_train),
            epochs=2,
            validation_data=data_generator(False),
            validation_steps=1,
            callbacks=cbs)

      for cb in cbs:
        cb.on_train_end()

      # Make sure file writer cache is clear to avoid failures during cleanup.
      writer_cache.FileWriterCache.clear()
Exemplo n.º 33
0
  def test_TensorBoard(self):
    np.random.seed(1337)

    temp_dir = self.get_temp_dir()
    self.addCleanup(shutil.rmtree, temp_dir)

    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=TRAIN_SAMPLES,
        test_samples=TEST_SAMPLES,
        input_shape=(INPUT_DIM,),
        num_classes=NUM_CLASSES)
    y_test = keras.utils.to_categorical(y_test)
    y_train = keras.utils.to_categorical(y_train)

    def data_generator(train):
      if train:
        max_batch_index = len(x_train) // BATCH_SIZE
      else:
        max_batch_index = len(x_test) // BATCH_SIZE
      i = 0
      while 1:
        if train:
          yield (x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE],
                 y_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE])
        else:
          yield (x_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE],
                 y_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE])
        i += 1
        i %= max_batch_index

    # case: Sequential
    with self.test_session():
      model = keras.models.Sequential()
      model.add(
          keras.layers.Dense(
              NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
      model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))
      model.compile(
          loss='categorical_crossentropy',
          optimizer='sgd',
          metrics=['accuracy'])
      tsb = keras.callbacks.TensorBoard(
          log_dir=temp_dir, histogram_freq=1, write_images=True,
          write_grads=True, batch_size=5)
      cbks = [tsb]

      # fit with validation data
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=3,
          verbose=0)

      # fit with validation data and accuracy
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=2,
          verbose=0)

      # fit generator with validation data
      model.fit_generator(
          data_generator(True),
          len(x_train),
          epochs=2,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          verbose=0)

      # fit generator without validation data
      model.fit_generator(
          data_generator(True),
          len(x_train),
          epochs=2,
          callbacks=cbks,
          verbose=0)

      # fit generator with validation data and accuracy
      model.fit_generator(
          data_generator(True),
          len(x_train),
          epochs=2,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          verbose=0)

      # fit generator without validation data and accuracy
      model.fit_generator(
          data_generator(True), len(x_train), epochs=2, callbacks=cbks)
      assert os.path.exists(temp_dir)
Exemplo n.º 34
0
  def test_class_weights(self):
    num_classes = 5
    batch_size = 5
    weighted_class = 3
    train_samples = 300
    test_samples = 300
    input_dim = 5

    model = keras.models.Sequential()
    model.add(keras.layers.Dense(10, input_shape=(input_dim,)))
    model.add(keras.layers.Activation('relu'))
    model.add(keras.layers.Dense(num_classes))
    model.add(keras.layers.Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=RMSPropOptimizer(learning_rate=0.001))

    np.random.seed(1337)
    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=test_samples,
        input_shape=(input_dim,),
        num_classes=num_classes)
    int_y_test = y_test.copy()
    int_y_train = y_train.copy()
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    test_ids = np.where(int_y_test == np.array(weighted_class))[0]

    class_weight = dict([(i, 1.) for i in range(num_classes)])
    class_weight[weighted_class] = 4.

    sample_weight = np.ones((y_train.shape[0]))
    sample_weight[int_y_train == weighted_class] = 4.

    model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=2,
        verbose=0,
        class_weight=class_weight,
        validation_data=(x_train, y_train, sample_weight))
    model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=2,
        verbose=0,
        class_weight=class_weight)
    model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=2,
        verbose=0,
        class_weight=class_weight,
        validation_split=0.1)

    model.train_on_batch(
        x_train[:batch_size], y_train[:batch_size], class_weight=class_weight)
    ref_score = model.evaluate(x_test, y_test, verbose=0)
    score = model.evaluate(
        x_test[test_ids, :], y_test[test_ids, :], verbose=0)
    self.assertLess(score, ref_score)
Exemplo n.º 35
0
  def test_class_weight_invalid_use_case(self):
    num_classes = 5
    train_samples = 1000
    test_samples = 1000
    input_dim = 5
    timesteps = 3

    model = keras.models.Sequential()
    model.add(
        keras.layers.TimeDistributed(
            keras.layers.Dense(num_classes),
            input_shape=(timesteps, input_dim)))
    model.add(keras.layers.Activation('softmax'))
    model.compile(
        loss='binary_crossentropy',
        optimizer=RMSPropOptimizer(learning_rate=0.001))

    (x_train, y_train), _ = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=test_samples,
        input_shape=(input_dim,),
        num_classes=num_classes)
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    class_weight = dict([(i, 1.) for i in range(num_classes)])

    del class_weight[1]
    with self.assertRaises(ValueError):
      model.fit(x_train, y_train,
                epochs=0, verbose=0, class_weight=class_weight)

    with self.assertRaises(ValueError):
      model.compile(
          loss='binary_crossentropy',
          optimizer=RMSPropOptimizer(learning_rate=0.001),
          sample_weight_mode=[])

    # Build multi-output model
    x = keras.Input((3,))
    y1 = keras.layers.Dense(4, name='1')(x)
    y2 = keras.layers.Dense(4, name='2')(x)
    model = keras.models.Model(x, [y1, y2])
    model.compile(optimizer=RMSPropOptimizer(learning_rate=0.001), loss='mse')
    x_np = np.random.random((10, 3))
    y_np = np.random.random((10, 4))
    w_np = np.random.random((10,))
    # This will work
    model.fit(x_np, [y_np, y_np], epochs=1, sample_weight={'1': w_np})
    # These will not
    with self.assertRaises(ValueError):
      model.fit(x_np, [y_np, y_np], epochs=1, sample_weight=[w_np])
    with self.assertRaises(TypeError):
      model.fit(x_np, [y_np, y_np], epochs=1, sample_weight=w_np)
    with self.assertRaises(ValueError):
      bad_w_np = np.random.random((11,))
      model.fit(x_np, [y_np, y_np], epochs=1, sample_weight={'1': bad_w_np})
    with self.assertRaises(ValueError):
      bad_w_np = np.random.random((10, 2))
      model.fit(x_np, [y_np, y_np], epochs=1, sample_weight={'1': bad_w_np})
    with self.assertRaises(ValueError):
      bad_w_np = np.random.random((10, 2, 2))
      model.fit(x_np, [y_np, y_np], epochs=1, sample_weight={'1': bad_w_np})
Exemplo n.º 36
0
  def test_ReduceLROnPlateau(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      def make_model():
        np.random.seed(1337)
        model = keras.models.Sequential()
        model.add(
            keras.layers.Dense(
                NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
        model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))

        model.compile(
            loss='categorical_crossentropy',
            optimizer=keras.optimizers.SGD(lr=0.1),
            metrics=['accuracy'])
        return model

      model = make_model()
      # This should reduce the LR after the first epoch (due to high epsilon).
      cbks = [
          keras.callbacks.ReduceLROnPlateau(
              monitor='val_loss',
              factor=0.1,
              min_delta=10,
              patience=1,
              cooldown=5)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=5,
          verbose=0)
      self.assertAllClose(
          float(keras.backend.get_value(model.optimizer.lr)),
          0.01,
          atol=1e-4)

      model = make_model()
      cbks = [
          keras.callbacks.ReduceLROnPlateau(
              monitor='val_loss',
              factor=0.1,
              min_delta=0,
              patience=1,
              cooldown=5)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=5,
          verbose=2)
      self.assertAllClose(
          float(keras.backend.get_value(model.optimizer.lr)), 0.1, atol=1e-4)
Exemplo n.º 37
0
  def test_CSVLogger(self):
    with self.test_session():
      np.random.seed(1337)
      temp_dir = self.get_temp_dir()
      self.addCleanup(shutil.rmtree, temp_dir)
      filepath = os.path.join(temp_dir, 'log.tsv')

      sep = '\t'
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      def make_model():
        np.random.seed(1337)
        model = keras.models.Sequential()
        model.add(
            keras.layers.Dense(
                NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
        model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))

        model.compile(
            loss='categorical_crossentropy',
            optimizer=keras.optimizers.SGD(lr=0.1),
            metrics=['accuracy'])
        return model

      # case 1, create new file with defined separator
      model = make_model()
      cbks = [keras.callbacks.CSVLogger(filepath, separator=sep)]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=1,
          verbose=0)

      assert os.path.exists(filepath)
      with open(filepath) as csvfile:
        dialect = csv.Sniffer().sniff(csvfile.read())
      assert dialect.delimiter == sep
      del model
      del cbks

      # case 2, append data to existing file, skip header
      model = make_model()
      cbks = [keras.callbacks.CSVLogger(filepath, separator=sep, append=True)]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=1,
          verbose=0)

      # case 3, reuse of CSVLogger object
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=1,
          verbose=0)

      with open(filepath) as csvfile:
        output = ' '.join(csvfile.readlines())
        assert len(re.findall('epoch', output)) == 1

      os.remove(filepath)
Exemplo n.º 38
0
  def test_TensorBoard_histogram_freq_must_have_validation_data(self):
    np.random.seed(1337)
    tmpdir = self.get_temp_dir()
    self.addCleanup(shutil.rmtree, tmpdir)

    with self.test_session():
      filepath = os.path.join(tmpdir, 'logs')

      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      def data_generator(train):
        if train:
          max_batch_index = len(x_train) // BATCH_SIZE
        else:
          max_batch_index = len(x_test) // BATCH_SIZE
        i = 0
        while 1:
          if train:
            # simulate multi-input/output models
            yield (x_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE],
                   y_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE])
          else:
            yield (x_test[i * BATCH_SIZE: (i + 1) * BATCH_SIZE],
                   y_test[i * BATCH_SIZE: (i + 1) * BATCH_SIZE])
          i += 1
          i %= max_batch_index

      inp = keras.Input((INPUT_DIM,))
      hidden = keras.layers.Dense(2, activation='relu')(inp)
      hidden = keras.layers.Dropout(0.1)(hidden)
      output = keras.layers.Dense(NUM_CLASSES, activation='softmax')(hidden)
      model = keras.models.Model(inputs=inp, outputs=output)
      model.compile(loss='categorical_crossentropy',
                    optimizer='sgd',
                    metrics=['accuracy'])

      # we must generate new callbacks for each test, as they aren't stateless
      def callbacks_factory(histogram_freq):
        return [keras.callbacks.TensorBoard(
            log_dir=filepath,
            histogram_freq=histogram_freq,
            write_images=True, write_grads=True,
            batch_size=5)]

      # fit w/o validation data should raise ValueError if histogram_freq > 0
      cbs = callbacks_factory(histogram_freq=1)
      with self.assertRaises(ValueError):
        model.fit(x_train, y_train, batch_size=BATCH_SIZE,
                  callbacks=cbs, epochs=3)

      for cb in cbs:
        cb.on_train_end()

      # fit generator without validation data should raise ValueError if
      # histogram_freq > 0
      cbs = callbacks_factory(histogram_freq=1)
      with self.assertRaises(ValueError):
        model.fit_generator(data_generator(True), len(x_train), epochs=2,
                            callbacks=cbs)

      for cb in cbs:
        cb.on_train_end()

      # fit generator with validation data generator should raise ValueError if
      # histogram_freq > 0
      cbs = callbacks_factory(histogram_freq=1)
      with self.assertRaises(ValueError):
        model.fit_generator(data_generator(True), len(x_train), epochs=2,
                            validation_data=data_generator(False),
                            validation_steps=1,
                            callbacks=cbs)

      for cb in cbs:
        cb.on_train_end()

      # Make sure file writer cache is clear to avoid failures during cleanup.
      writer_cache.FileWriterCache.clear()
Exemplo n.º 39
0
  def test_multi_inputs_multi_outputs(self):
    np.random.seed(_RANDOM_SEED)
    (a_train, c_train), (a_test, c_test) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(16,),
        num_classes=3)
    np.random.seed(_RANDOM_SEED)
    (b_train, d_train), (b_test, d_test) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(16,),
        num_classes=2)
    c_train = keras.utils.to_categorical(c_train)
    c_test = keras.utils.to_categorical(c_test)
    d_train = keras.utils.to_categorical(d_train)
    d_test = keras.utils.to_categorical(d_test)

    def train_input_fn():
      input_dict = {
          'input_a':
              ops.convert_to_tensor(
                  np.array(a_train, dtype=np.float32), dtype=dtypes.float32),
          'input_b':
              ops.convert_to_tensor(
                  np.array(b_train, dtype=np.float32), dtype=dtypes.float32)
      }
      output_dict = {
          'dense_2':
              ops.convert_to_tensor(
                  np.array(c_train, dtype=np.float32), dtype=dtypes.float32),
          'dense_3':
              ops.convert_to_tensor(
                  np.array(d_train, dtype=np.float32), dtype=dtypes.float32)
      }
      return input_dict, output_dict

    def eval_input_fn():
      input_dict = {
          'input_a':
              ops.convert_to_tensor(
                  np.array(a_test, dtype=np.float32), dtype=dtypes.float32),
          'input_b':
              ops.convert_to_tensor(
                  np.array(b_test, dtype=np.float32), dtype=dtypes.float32)
      }
      output_dict = {
          'dense_2':
              ops.convert_to_tensor(
                  np.array(c_test, dtype=np.float32), dtype=dtypes.float32),
          'dense_3':
              ops.convert_to_tensor(
                  np.array(d_test, dtype=np.float32), dtype=dtypes.float32)
      }
      return input_dict, output_dict

    with self.test_session():
      model = multi_inputs_multi_outputs_model()
      est_keras = keras.estimator.model_to_estimator(
          keras_model=model, config=self._config)
      before_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
      after_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      self.assertLess(after_eval_results['loss'], before_eval_results['loss'])
Exemplo n.º 40
0
  def test_ModelCheckpoint(self):
    if h5py is None:
      return  # Skip test if models cannot be saved.

    with self.test_session():
      np.random.seed(1337)

      temp_dir = self.get_temp_dir()
      self.addCleanup(shutil.rmtree, temp_dir)

      filepath = os.path.join(temp_dir, 'checkpoint.h5')
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)
      # case 1
      monitor = 'val_loss'
      save_best_only = False
      mode = 'auto'

      model = keras.models.Sequential()
      model.add(
          keras.layers.Dense(
              NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
      model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))
      model.compile(
          loss='categorical_crossentropy',
          optimizer='rmsprop',
          metrics=['accuracy'])

      cbks = [
          keras.callbacks.ModelCheckpoint(
              filepath,
              monitor=monitor,
              save_best_only=save_best_only,
              mode=mode)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=1,
          verbose=0)
      assert os.path.exists(filepath)
      os.remove(filepath)

      # case 2
      mode = 'min'
      cbks = [
          keras.callbacks.ModelCheckpoint(
              filepath,
              monitor=monitor,
              save_best_only=save_best_only,
              mode=mode)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=1,
          verbose=0)
      assert os.path.exists(filepath)
      os.remove(filepath)

      # case 3
      mode = 'max'
      monitor = 'val_acc'
      cbks = [
          keras.callbacks.ModelCheckpoint(
              filepath,
              monitor=monitor,
              save_best_only=save_best_only,
              mode=mode)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=1,
          verbose=0)
      assert os.path.exists(filepath)
      os.remove(filepath)

      # case 4
      save_best_only = True
      cbks = [
          keras.callbacks.ModelCheckpoint(
              filepath,
              monitor=monitor,
              save_best_only=save_best_only,
              mode=mode)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=1,
          verbose=0)
      assert os.path.exists(filepath)
      os.remove(filepath)

      # Case: metric not available.
      cbks = [
          keras.callbacks.ModelCheckpoint(
              filepath,
              monitor='unknown',
              save_best_only=True)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=1,
          verbose=0)
      # File won't be written.
      assert not os.path.exists(filepath)

      # case 5
      save_best_only = False
      period = 2
      mode = 'auto'

      filepath = os.path.join(temp_dir, 'checkpoint.{epoch:02d}.h5')
      cbks = [
          keras.callbacks.ModelCheckpoint(
              filepath,
              monitor=monitor,
              save_best_only=save_best_only,
              mode=mode,
              period=period)
      ]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=4,
          verbose=1)
      assert os.path.exists(filepath.format(epoch=2))
      assert os.path.exists(filepath.format(epoch=4))
      os.remove(filepath.format(epoch=2))
      os.remove(filepath.format(epoch=4))
      assert not os.path.exists(filepath.format(epoch=1))
      assert not os.path.exists(filepath.format(epoch=3))

      # Invalid use: this will raise a warning but not an Exception.
      keras.callbacks.ModelCheckpoint(
          filepath,
          monitor=monitor,
          save_best_only=save_best_only,
          mode='unknown')