Exemplo n.º 1
0
    def HDP_feature_extracter_from_texts(self,mashup_api):
        if self.gd is None:
            self.gd = get_default_gd(tag_times=0,mashup_only=True,strict_train=True) # 用gensim处理文本,文本中不加tag
            self.mashup_features ,self.api_features =self.gd.model_pcs(new_Para.param.text_extracter_mode) #
            self.feature_dim = len(self.mashup_features[0])

        ID_input = Input(shape=(1,), dtype='int32')
        if mashup_api=='mashup':
            if self.mashup_text_feature_extracter is None:  # 没求过
                mashup_text_embedding_layer = Embedding(self.all_mashup_num,self.feature_dim,
                                                 embeddings_initializer=Constant(self.mashup_features),
                                                 mask_zero=False, input_length=1,
                                                 trainable=False, name = 'mashup_text_embedding_layer')
                x = mashup_text_embedding_layer(ID_input)
                self.mashup_text_feature_extracter = Model(ID_input, x, name='mashup_text_feature_extracter')
            return self.mashup_text_feature_extracter

        elif mashup_api=='api':
            if self.api_text_feature_extracter is None:  # 没求过
                api_text_feature_extracter = Embedding(self.all_api_num,self.feature_dim,
                                                        embeddings_initializer=Constant(self.api_features),
                                                        mask_zero=False, input_length=1,
                                                        trainable=False, name='api_text_embedding_layer')
                x = api_text_feature_extracter(ID_input)
                self.api_text_feature_extracter = Model(ID_input, x, name='api_text_feature_extracter')

            return self.api_text_feature_extracter
Exemplo n.º 2
0
    def get_tag_embedding_layer(self, nonstatic=True):
        """"
        同text,处理tags,得到定制的embedding层
        """
        if self.tag_embedding_layer is None:
            if self.encoded_tags is None:
                self.process_tags()
            # 得到词典中每个词对应的embedding
            num_words = min(MAX_NUM_WORDS, len(self.encoded_tags.word2index)) + 1  # 实际词典大小 +1  因为0代表0的填充向量
            self.tag_embedding_matrix = get_embedding_matrix(self.encoded_tags.word2index, new_Para.param.embedding_name,
                                                              dimension=self.word_embedding_dim)
            print('built tag embedding matrix, done!')

            self.tag_embedding_layer = Embedding(num_words,
                                                  self.word_embedding_dim,
                                                  embeddings_initializer=Constant(self.tag_embedding_matrix),
                                                  embeddings_regularizer=regularizers.l2(
                                                  new_Para.param.embeddings_regularizer),
                                                  input_length=MAX_SEQUENCE_LENGTH,
                                                  mask_zero=True,
                                                  trainable=new_Para.param.embedding_train,
                                                  name='tag_embedding_layer')  #

            print('built tag embedding layer, done!')
        return self.tag_embedding_layer
Exemplo n.º 3
0
    def __init__(self,
                 num_layers,
                 d_model,
                 num_heads,
                 dff,
                 vocab_size,
                 input_seq_len,
                 output_seq_len,
                 rate=0.1):
        super(AbstractiveSummarization, self).__init__()

        self.input_seq_len = input_seq_len
        self.output_seq_len = output_seq_len

        self.vocab_size = vocab_size

        self.bert = BertLayer(d_embedding=d_model, trainable=False)

        embedding_matrix = _embedding_from_bert()

        self.embedding = tf.keras.layers.Embedding(
            vocab_size,
            d_model,
            trainable=False,
            embeddings_initializer=Constant(embedding_matrix))

        self.decoder = Decoder(num_layers, d_model, num_heads, dff, vocab_size,
                               rate)

        self.final_layer = tf.keras.layers.Dense(vocab_size)
Exemplo n.º 4
0
def seq_2_seq_att_LSTM(X_embedding, MAX_LEN, num_words,
                EMBEDDING_DIM, LSTM_units, LSTM_dropout):

    # Encoder
    # Encoder input shape is (batch size, max length)
    encoder_inputs = Input(shape=(MAX_LEN,))
    encoder_embedding = Embedding(input_dim=num_words, output_dim=EMBEDDING_DIM, 
                        input_length = MAX_LEN, embeddings_initializer=Constant(X_embedding), 
                        trainable=False)(encoder_inputs)

    # LSTM
    encoder_lstm = LSTM(units=LSTM_units, return_state=True, return_sequences=True, recurrent_dropout=LSTM_dropout, dropout=LSTM_dropout)
    encoder_outputs, state_h, state_c = encoder_lstm(encoder_embedding)
    encoder_states = [state_h, state_c]

    # Decoder
    decoder_inputs = Input(shape=(None,))
    decoder_embedding_layer = Embedding(input_dim=num_words, output_dim=EMBEDDING_DIM, trainable=True)
    decoder_embedding = decoder_embedding_layer(decoder_inputs)
    decoder_lstm = LSTM(units=LSTM_units, return_state=True, return_sequences=True, recurrent_dropout=LSTM_dropout, dropout=LSTM_dropout)
    decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)

    # Attention
    attention_weight = dot([decoder_outputs, encoder_outputs], axes=[2, 2], normalize=True) # cosine similarity
    attention = Activation('softmax')(attention_weight)

    context = dot([attention, encoder_outputs], axes=[2,1])
    decoder_combined_context = concatenate([context, decoder_outputs])

    att_output = TimeDistributed(Dense(64, activation="tanh"))(decoder_combined_context) 
    output = TimeDistributed(Dense(num_words, activation="softmax"))(att_output)
    
    model = Model(inputs=[encoder_inputs,decoder_inputs], outputs=output)

    return model
def get_initializer(initializer_params):
    if initializer_params["function"] == "truncated_normal":
        return TruncatedNormal(stddev=initializer_params["stddev"])
    elif initializer_params["function"] == "constant":
        return Constant(value=initializer_params["value"])
    else:
        return initializer_params["function"]
Exemplo n.º 6
0
    def get_text_embedding_layer(self, nonstatic=True):
        """"
        得到定制的embedding层

        paras:
        data_dirs: 存放mashup api 信息的文件夹
        embedding_name:使用哪种pre-trained embedding,google_news or glove
        embedding_path:embedding 文件存放路径
        EMBEDDING_DIM:维度
        nonstatic:基于pre-trained embedding是否微调?
        """

        if self.text_embedding_layer is None:
            if self.encoded_texts is None:
                self.process_texts()
            # 得到词典中每个词对应的embedding
            num_words = min(MAX_NUM_WORDS, len(self.encoded_texts.word2index))+ 1  # 实际词典大小 +1  因为0代表0的填充向量
            self.text_embedding_matrix = get_embedding_matrix(self.encoded_texts.word2index, new_Para.param.embedding_name,
                                                              dimension=self.word_embedding_dim)
            print('built embedding matrix, done!')

            self.text_embedding_layer = Embedding(num_words,
                                                  self.word_embedding_dim,
                                                  embeddings_initializer=Constant(self.text_embedding_matrix),
                                                  embeddings_regularizer= regularizers.l2(new_Para.param.embeddings_regularizer),
                                                  input_length=MAX_SEQUENCE_LENGTH,
                                                  mask_zero=True,
                                                  trainable=new_Para.param.embedding_train, name = 'text_embedding_layer')  # 定义一层 # mask_zero=True, !!!

            print('built text embedding layer, done!')
        return self.text_embedding_layer
Exemplo n.º 7
0
 def set_embedding_layers(self):
     self.api_implict_emb_layer = Embedding(
         self.all_api_num + 1,
         new_Para.param.num_feat,
         embeddings_initializer=Constant(self.i_factors_matrix),
         mask_zero=False,
         trainable=False,
         name='api_implict_embedding_layer')
def kdd_create_embedding_dict(sparse_feature_columns,
                              varlen_sparse_feature_columns,
                              init_std,
                              seed,
                              l2_reg,
                              prefix='sparse_',
                              seq_mask_zero=True):
    global user_embed_np, item_embed_np

    sparse_embedding = {}
    for feat in sparse_feature_columns:
        embed_initializer = RandomNormal(mean=0.0, stddev=init_std, seed=seed)
        if feat.embedding_name == 'user_id':
            print('init user embed')
            embed_initializer = Constant(user_embed_np)
        if feat.embedding_name == 'item_id':
            print('init item embed')
            embed_initializer = Constant(item_embed_np)
        sparse_embedding[feat.embedding_name] = Embedding(
            feat.vocabulary_size,
            feat.embedding_dim,
            embeddings_initializer=embed_initializer,
            name=prefix + '_emb_' + feat.embedding_name)

    if varlen_sparse_feature_columns and len(
            varlen_sparse_feature_columns) > 0:
        for feat in varlen_sparse_feature_columns:
            embed_initializer = RandomNormal(mean=0.0,
                                             stddev=init_std,
                                             seed=seed)
            if feat.embedding_name == 'user_id':
                print('init user embed')
                embed_initializer = Constant(user_embed_np)
            if feat.embedding_name == 'item_id':
                print('init item embed')
                embed_initializer = Constant(item_embed_np)
            sparse_embedding[feat.embedding_name] = Embedding(
                feat.vocabulary_size,
                feat.embedding_dim,
                embeddings_initializer=embed_initializer,
                name=prefix + '_seq_emb_' + feat.name,
                mask_zero=seq_mask_zero)
    return sparse_embedding
Exemplo n.º 9
0
def sep_cnn_model(input_shape,
                  num_classes,
                  num_features,
                  embedding_matrix,
                  blocks=1,
                  filters=64,
                  kernel_size=4,
                  dropout_rate=0.5):
    op_units, op_activation = _get_last_layer_units_and_activation(num_classes)

    model = models.Sequential()
    model.add(
        Embedding(input_dim=num_features,
                  output_dim=300,
                  input_length=input_shape,
                  embeddings_initializer=Constant(embedding_matrix)))

    for _ in range(blocks - 1):
        model.add(Dropout(rate=dropout_rate))
        model.add(
            SeparableConv1D(filters=filters,
                            kernel_size=kernel_size,
                            activation='relu',
                            bias_initializer='random_uniform',
                            depthwise_initializer='random_uniform',
                            padding='same'))
        model.add(
            SeparableConv1D(filters=filters,
                            kernel_size=kernel_size,
                            activation='relu',
                            bias_initializer='random_uniform',
                            depthwise_initializer='random_uniform',
                            padding='same'))
        model.add(MaxPooling1D(pool_size=3))

    model.add(
        SeparableConv1D(filters=filters * 2,
                        kernel_size=kernel_size,
                        activation='relu',
                        bias_initializer='random_uniform',
                        depthwise_initializer='random_uniform',
                        padding='same'))
    model.add(
        SeparableConv1D(filters=filters * 2,
                        kernel_size=kernel_size,
                        activation='relu',
                        bias_initializer='random_uniform',
                        depthwise_initializer='random_uniform',
                        padding='same'))

    model.add(GlobalAveragePooling1D())
    # model.add(MaxPooling1D())
    model.add(Dropout(rate=0.5))
    model.add(Dense(op_units, activation=op_activation))
    return model
Exemplo n.º 10
0
    def set_embedding_layers(self):
        self.mid2text_fea_layer = Embedding(self.all_mashup_num,
                                            self.text_fea_dim,
                                            embeddings_initializer=Constant(
                                                self.mashup_texts_features),
                                            mask_zero=False,
                                            input_length=1,
                                            trainable=False,
                                            name='mashup_text_fea_layer')

        self.aid2text_fea_layer = Embedding(self.all_api_num + 1,
                                            self.tag_fea_dim,
                                            embeddings_initializer=Constant(
                                                self.api_texts_features),
                                            mask_zero=False,
                                            trainable=False,
                                            name='api_text_fea_layer')

        self.mid2tag_fea_layer = Embedding(self.all_mashup_num,
                                           self.text_fea_dim,
                                           embeddings_initializer=Constant(
                                               self.mashup_tag_features),
                                           mask_zero=False,
                                           input_length=1,
                                           trainable=False,
                                           name='mashup_tag_fea_layer')

        self.aid2tag_fea_layer = Embedding(self.all_api_num + 1,
                                           self.tag_fea_dim,
                                           embeddings_initializer=Constant(
                                               self.api_tag_features),
                                           mask_zero=False,
                                           trainable=False,
                                           name='api_tag_fea_layer')

        self.api_implict_emb_layer = Embedding(self.all_api_num + 1,
                                               new_Para.param.num_feat,
                                               embeddings_initializer=Constant(
                                                   self.i_factors_matrix),
                                               mask_zero=False,
                                               trainable=False,
                                               name='api_implict_emb_layer')
Exemplo n.º 11
0
def text_cnn():
    """
    构建text_cnn模型
    :return:
    """
    # Inputs
    sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH, ), dtype='int32')

    # Embeddings layers
    # load pre-trained word embeddings into an Embedding layer
    # note that we set trainable = False so as to keep the embeddings fixed
    embeddings_index = get_embeddings_index()
    word_index = get_word_index()
    num_words = min(MAX_NUM_WORDS, len(word_index) + 1)
    embedding_matrix = get_embedding_matrix(embeddings_index, word_index)
    embedding_layer = Embedding(
        num_words,
        EMBEDDING_DIM,
        embeddings_initializer=Constant(embedding_matrix),
        input_length=MAX_SEQUENCE_LENGTH,
        trainable=False)

    # embeddings_index = get_embeddings_index()
    # word_index = get_word_index()
    # embedding_matrix = get_embedding_matrix(embeddings_index, word_index)
    # embedding_layer = Embedding(len(word_index) + 1,
    #                             EMBEDDING_DIM,
    #                             weights=[embedding_matrix],
    #                             input_length=MAX_SEQUENCE_LENGTH,
    #                             trainable=False)

    embedded_sequences = embedding_layer(sequence_input)

    # conv layers
    convs = []
    for fs in FILTER_SIZES:
        l_conv = Conv1D(filters=100, kernel_size=fs,
                        activation='relu')(embedded_sequences)
        l_pool = MaxPooling1D(MAX_SEQUENCE_LENGTH - fs + 1)(l_conv)
        l_pool = Flatten()(l_pool)
        convs.append(l_pool)
    merge = concatenate(convs, axis=1)

    x = Dropout(DROPOUT_RATE)(merge)
    x = Dense(32, activation='relu')(x)

    preds = Dense(units=1, activation='sigmoid')(x)

    model = Model(sequence_input, preds)
    model.compile(loss="categorical_crossentropy",
                  optimizer="rmsprop",
                  metrics=['acc'])

    return model
Exemplo n.º 12
0
    def set_embedding_layers(self):
        # embedding
        # using the embedding layer instead of packing in the instance, to save memory
        self.mid2text_embedding_layer = Embedding(
            self.all_mashup_num,
            new_Para.param.MAX_SEQUENCE_LENGTH,
            embeddings_initializer=Constant(self.mid2text_wordindex),
            mask_zero=False,
            input_length=1,
            trainable=False,
            name='mashup_text_encoding_embedding_layer')

        self.aid2text_embedding_layer = Embedding(
            self.all_api_num + 1,
            new_Para.param.MAX_SEQUENCE_LENGTH,
            embeddings_initializer=Constant(self.aid2text_wordindex),
            mask_zero=False,
            trainable=False,
            name='api_text_encoding_embedding_layer')

        self.mid2tag_embedding_layer = Embedding(
            self.all_mashup_num,
            new_Para.param.MAX_SEQUENCE_LENGTH,
            embeddings_initializer=Constant(self.mid2tag_wordindex),
            mask_zero=False,
            input_length=1,
            trainable=False,
            name='mashup_tag_encoding_embedding_layer')

        self.aid2tag_embedding_layer = Embedding(
            self.all_api_num + 1,
            new_Para.param.MAX_SEQUENCE_LENGTH,
            embeddings_initializer=Constant(self.aid2tag_wordindex),
            mask_zero=False,
            trainable=False,
            name='api_tag_encoding_embedding_layer')

        self.user_text_feature_extracter = None
        self.item_text_feature_extracter = None
        self.user_tag_feature_extracter = None
        self.item_tag_feature_extracter = None
Exemplo n.º 13
0
def biLSTM_baseline(embedding_matrix, MAX_LEN, num_words, 
					EMBEDDING_DIM, LSTM_units, LSTM_dropout):
	input_dimen = Input(shape=(MAX_LEN,))
	model = Embedding(input_dim=num_words, output_dim=EMBEDDING_DIM, input_length=MAX_LEN,
						embeddings_initializer=Constant(embedding_matrix), trainable=False)(input_dimen)

	model = Bidirectional(LSTM(units=LSTM_units, return_sequences=True, recurrent_dropout=LSTM_dropout, dropout=LSTM_dropout))(model)
	model = Bidirectional(LSTM(units=LSTM_units, return_sequences=True, recurrent_dropout=LSTM_dropout, dropout=LSTM_dropout))(model)
	out = TimeDistributed(Dense(1, activation='sigmoid'))(model)
	model = Model(input_dimen, out)
	

	return model
    def build(self, input_shape):
        # Sanity Check
        if isinstance(input_shape, list):
            raise ValueError('ConstraintEnforcementLayer has only 1 input.')
        assert input_shape[-1] == self.A.shape[1]

        # Create computation graph matrices and set values
        self.A_graph = self.add_weight(shape=self.A.shape,
                                       initializer=Constant(self.A),
                                       name='A',
                                       trainable=False)
        self.b_graph = self.add_weight(shape=self.b.shape,
                                       initializer=Constant(self.b),
                                       name='b',
                                       trainable=False)
        self.c_graph = self.add_weight(shape=self.c.shape,
                                       initializer=Constant(self.c),
                                       name='c',
                                       trainable=False)

        # Done building
        super(ConstraintEnforcementLayer, self).build(input_shape)
Exemplo n.º 15
0
def build_model(embedding_weights,
                embedding_dim,
                num_words,
                input_length,
                num_classes=20):
    """ Builds a Keras model. It sets embeddings layer trainable to False
    to keep the embeddings fixed

    Parameters
    ----------
    embedding_weights: np.ndarray
        A numpy array contains embedding weights
    embedding_dim: int
        Embeddings dimension
    num_words: int
        Number of words in the dataset
    input_length: int
        Maximum sequence length
    num_classes: int
        Number of classes in the dataset

    Returns
    -------
    model: Model
        A keras compiled model instance
    """

    embedding = Embedding(num_words,
                          embedding_dim,
                          embeddings_initializer=Constant(embedding_weights),
                          input_length=input_length,
                          trainable=False)

    seq_input = Input(shape=(input_length, ), dtype='int32')
    embedded_sequences = embedding(seq_input)
    x = Conv1D(128, 5, activation='relu')(embedded_sequences)
    x = MaxPooling1D(5)(x)
    x = Conv1D(128, 5, activation='relu')(x)
    x = MaxPooling1D(5)(x)
    x = Conv1D(128, 5, activation='relu')(x)
    x = GlobalMaxPooling1D()(x)
    x = Dense(128, activation='relu')(x)
    preds = Dense(num_classes, activation='softmax')(x)

    model = Model(seq_input, preds)
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['acc'])

    return model
Exemplo n.º 16
0
    def create_actor_model(self,
                           state_input,
                           root_net,
                           action_dim,
                           lr=0.001,
                           dropout=0.3):
        """
        net = Dense(64, kernel_regularizer=regularizers.l2(0.01),
                activity_regularizer=regularizers.l1(0.01), activation="relu")(root_net)
        """
        net = Dense(40, activation="relu")(root_net)
        #net = Dropout(dropout)(net)
        if self.use_batch_norm:
            net = BatchNormalization()(net)
        """
        net = Dense(64, input_dim=64,
                    kernel_regularizer=regularizers.l2(0.01),
                    activity_regularizer=regularizers.l1(0.01), activation="relu")(net)
        """
        net = Flatten()(net)
        net = Dense(action_dim * 2, activation="sigmoid")(net)
        #net = Dropout(dropout)(net)
        if self.use_batch_norm:
            net = BatchNormalization()(net)

        # Final layer weights are init to Uniform[-3e-3, 3e-3]
        random_initializer = RandomUniform(minval=0.01, maxval=0.1, seed=None)

        # add input
        # @TODO add the previous action

        actor_out = Dense(
            action_dim,
            #kernel_initializer=random_initializer,
            #kernel_initializer="glorot_uniform", # for softmax
            #kernel_initializer="he_uniform", # for relu
            activation="softmax",
            # activation="relu",
            kernel_initializer=Constant(1.0 / action_dim),
            name="actor_out")(net)

        # actor_out = CustomActivation()(actor_out)
        #actor_out = Lambda(lambda x: tf.sigmoid(x) /  (1e-5+ tf.norm(tf.sigmoid(x), axis=0, ord=1, keep_dims=True)))(actor_out)

        actor_model = Model(inputs=state_input, outputs=actor_out)
        if DEBUG:
            print("ACTOR MODEL :", actor_model.summary())

        return actor_model
Exemplo n.º 17
0
def seq_2_seq_biLSTM_att(X_embedding, MAX_LEN, num_words,
                EMBEDDING_DIM, LSTM_units, LSTM_dropout):
    
    # Encoder
    # [?, 100]
    encoder_inputs = Input(shape=(MAX_LEN,))

    # [?, 100, 300]
    encoder_embedding = Embedding(input_dim=num_words, output_dim=EMBEDDING_DIM, 
                        input_length = MAX_LEN, embeddings_initializer=Constant(X_embedding), 
                        trainable=False)(encoder_inputs)

    # LSTM
    
    encoder_lstm = Bidirectional(LSTM(units=LSTM_units, return_state=True, return_sequences=True, recurrent_dropout=LSTM_dropout, dropout=LSTM_dropout))
    # [?, 100, 300]
    encoder_outputs, forward_h, forward_c, backward_h, backward_c = encoder_lstm(encoder_embedding)
    # [?, 300]
    state_h = concatenate([forward_h, backward_h])
    state_c = concatenate([forward_c, backward_c])
    encoder_states = [state_h, state_c]

    # Decoder
    # [?, 30]
    decoder_inputs = Input(shape=(None,))
    decoder_embedding_layer = Embedding(input_dim=num_words, output_dim=EMBEDDING_DIM, trainable=True)
    # [?, 30, 300]
    decoder_embedding = decoder_embedding_layer(decoder_inputs)
    decoder_lstm = LSTM(units=2*LSTM_units, return_state=True, return_sequences=True, recurrent_dropout=LSTM_dropout, dropout=LSTM_dropout)
    # [?, 30, 300]
    decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)
    # [?, 30, 100]
    attention_weight = dot([decoder_outputs, encoder_outputs], axes=[2, 2])
    attention = Activation('softmax')(attention_weight)

    # [?, 30, 300]
    context = dot([attention, encoder_outputs], axes=[2,1]) #[?, 100, 300] = dot([?,?,100] , [?, 100, 300])
    
    # [?, 30, 600]
    decoder_combined_context = concatenate([context, decoder_outputs])

    # [?, 30, 64]
    att_output = TimeDistributed(Dense(128, activation="tanh"))(decoder_combined_context) 
    # [?, 30, 39093]
    output = TimeDistributed(Dense(num_words, activation="softmax"))(att_output)
    
    model = Model(inputs=[encoder_inputs,decoder_inputs], outputs=output)

    return model
Exemplo n.º 18
0
def cnn_model(
        input_shape,  # input list shape (word index list)
        num_classes,  # output shape
        num_features,  # number of word + empty
        embedding_matrix,
        filters,
        kernel_sizes,
        dropout_rate,
        embedding_trainable,
        l2_lambda):
    embedding_layer = Embedding(
        input_dim=num_features,
        output_dim=300,  # hard code
        embeddings_initializer=Constant(embedding_matrix),
        input_length=input_shape,
        trainable=embedding_trainable)

    # word index list, not map to embedding yet
    sequence_input = Input(shape=(input_shape, ), dtype='int32')
    embedded_sequences = embedding_layer(sequence_input)

    nn_layers = list()
    for kernel_size in kernel_sizes:
        conv_layer_0 = Convolution1D(filters, kernel_size,
                                     padding='valid')(embedded_sequences)
        conv_layer_1 = BatchNormalization(axis=1)(conv_layer_0)
        conv_layer_2 = Activation('relu')(conv_layer_1)
        pool_layer_0 = MaxPooling1D(input_shape - kernel_size +
                                    1)(conv_layer_2)
        pool_layer_1 = Dropout(dropout_rate)(pool_layer_0)

        nn_layers.append(pool_layer_1)

    # merge diff kernal size generated output
    line_merge_layer = concatenate(nn_layers)
    line_flat_layer = Flatten()(line_merge_layer)

    norm_layer = BatchNormalization(axis=1)(line_flat_layer)
    drop_layer = Dropout(dropout_rate)(norm_layer)

    preds = Dense(num_classes,
                  kernel_regularizer=regularizers.l2(l2_lambda),
                  activation='softmax')(drop_layer)

    cnn_model = Model(inputs=sequence_input, outputs=preds)

    return cnn_model
Exemplo n.º 19
0
def seq_2_seq(X_embedding, MAX_LEN, num_words, EMBEDDING_DIM, LSTM_units,
              LSTM_dropout):

    # Encoder
    encoder_inputs = Input(shape=(MAX_LEN, ))
    encoder_embedding = Embedding(input_dim=num_words,
                                  output_dim=EMBEDDING_DIM,
                                  input_length=MAX_LEN,
                                  embeddings_initializer=Constant(X_embedding),
                                  trainable=False)(encoder_inputs)

    # LSTM
    encoder_lstm = LSTM(units=LSTM_units,
                        return_state=True,
                        return_sequences=True,
                        recurrent_dropout=LSTM_dropout,
                        dropout=LSTM_dropout)
    encoder_output, state_h, state_c = encoder_lstm(encoder_embedding)

    # Decoder
    decoder_inputs = Input(shape=(None, ))
    decoder_embedding_layer = Embedding(input_dim=num_words,
                                        output_dim=EMBEDDING_DIM,
                                        trainable=True)
    decoder_embedding = decoder_embedding_layer(decoder_inputs)
    decoder_lstm = LSTM(units=LSTM_units,
                        return_state=True,
                        return_sequences=True,
                        recurrent_dropout=LSTM_dropout,
                        dropout=LSTM_dropout)
    decoder_outputs, _, _ = decoder_lstm(decoder_embedding,
                                         initial_state=[state_h, state_c])

    output = TimeDistributed(Dense(num_words,
                                   activation='softmax'))(decoder_outputs)
    model = Model([encoder_inputs, decoder_inputs], output)

    return model
Exemplo n.º 20
0
 def build(self, input_shape):
     self.gamma = self.add_weight(name=self.name + '_gamma',
                                  shape=(input_shape[-1], ),
                                  initializer=Constant(self.scale),
                                  trainable=True)
     super(Normalize, self).build(input_shape)
Exemplo n.º 21
0
 def build(self, input_shape):
     self.multiplier = self.add_weight(
         name="multiplier",
         shape=[],
         dtype=tf.float32,
         initializer=Constant(value=self.initial_value))
Exemplo n.º 22
0
def sepCNN(blocks,
           filters,
           kernel_size,
           embedding_dim,
           dropout_rate,
           pool_size,
           input_shape,
           num_features,
           pretrained_embedding=False,
           embedding_trainable=False,
           embedding_weights=None,
           learning_rate=1e-3):
    """ Creates an instance of a separable CNN model.

    Parameters
    ----------
    blocks: int
        Number of pairs of sepCNN and pooling blocks in the model. One block
        contains [DropOut, Conv1D, Conv1D, MaxPool]
    filters: int
        Output dimension of the layers.
    kernel_size: int
        Length of the convolution window.
    embedding_dim: int
        Dimension of the embedding vectors.
    dropout_rate: float
        Percentage of input to drop at Dropout layers.
    pool_size: int
        Factor by which to downscale input at MaxPooling layer.
    input_shape: tuple
        Shape of input to the model.
    num_features: int
        Number of words (embedding input dimension).
    pretrained_embedding: bool
        True if pre-trained embedding is on.
    embedding_trainable: bool
        True if embedding layer is trainable.
    embedding_weights: np.ndarray
        Dictionary with embedding coefficients.
    learning_rate: float
        Learning rate parameter for the model

    Returns
    -------
    model:
        A compiled sepCNN keras model instance.
    """

    model = Sequential()

    if pretrained_embedding:
        model.add(
            Embedding(num_features,
                      embedding_dim,
                      input_length=input_shape[0],
                      embeddings_initializer=Constant(embedding_weights),
                      trainable=embedding_trainable))
    else:
        model.add(
            Embedding(num_features, embedding_dim,
                      input_length=input_shape[0]))

    for _ in range(blocks - 1):
        model.add(Dropout(dropout_rate))
        model.add(
            SeparableConv1D(filters,
                            kernel_size,
                            activation='relu',
                            padding='same'))
        model.add(
            SeparableConv1D(filters,
                            kernel_size,
                            activation='relu',
                            padding='same'))
        model.add(MaxPooling1D(pool_size))

    model.add(
        SeparableConv1D(filters * 2,
                        kernel_size,
                        activation='relu',
                        padding='same'))
    model.add(
        SeparableConv1D(filters * 2,
                        kernel_size,
                        activation='relu',
                        padding='same'))
    model.add(GlobalAveragePooling1D())
    model.add(Dropout(dropout_rate))
    model.add(Dense(1, activation='sigmoid'))

    optimizer = Adam(lr=learning_rate)
    model.compile(optimizer=optimizer,
                  loss='binary_crossentropy',
                  metrics=['acc'])

    return model
Exemplo n.º 23
0
    eval_data = data.test.images  
    eval_labels = data.test.labels
    eval_labels = np.asarray(data.test.labels,dtype=np.int32)
    eval_data, eval_labels = shuffle(eval_data, eval_labels)
    return (train_data, train_labels, eval_data, eval_labels) 

# Laden der Daten
train_data, train_labels, eval_data, eval_labels = load_fashion_data()
train_data = train_data.reshape(-1, 28, 28, 1)
train_labels = np_utils.to_categorical(train_labels, 10)

print(train_data.shape)

# Model mit Keras
model.add(InputLayer(input_shape=(28, 28,1),name="1_Eingabe"))
model.add(Conv2D(32,(2, 2),padding='same',bias_initializer=Constant(0.01),kernel_initializer='random_uniform',name="2_Conv2D"))
model.add(Activation(activation='relu',name="3_ReLu"))
model.add(MaxPool2D(padding='same',name="4_MaxPooling2D"))
model.add(Conv2D(32,(2, 2),padding='same',bias_initializer=Constant(0.01),kernel_initializer='random_uniform',name="5_Conv2D"))
model.add(Activation(activation='relu',name="6_ReLu"))
model.add(MaxPool2D(padding='same',name="7_MaxPooling2D"))
model.add(Flatten())
model.add(Dense(1024,activation='relu',bias_initializer=Constant(0.01),kernel_initializer='random_uniform',name="8_Dense"))
model.add(Dropout(0.4,name="9_Dense"))
model.add(Dense(10, activation='softmax',name="10_Ausgabe"))

model.compile(loss=losses.categorical_crossentropy, optimizer=optimizers.Adadelta(), metrics = ["accuracy","mse",metrics.categorical_accuracy])

#keras.backend.set_session(tf_debug.TensorBoardDebugWrapperSession(tf.Session(), "localhost:12345"))
K.set_session(tf_debug.TensorBoardDebugWrapperSession(tf.Session(), "localhost:12345"))
Exemplo n.º 24
0
    if embedding_vector is not None:
        #words not found in the embedding index will be all-zeros
        embedding_matrix[i] = embedding_vector

print(num_words)

# In[22]:

from tensorflow.python.keras.initializers import Constant

#Defining model and using the embeddding  matrix as input to the embedding layer
model = Sequential()
embedding_layer = Embedding(
    num_words,
    EMBEDDING_DIM,
    embeddings_initializer=Constant(embedding_matrix),
    input_length=max_length,
    trainable=False
)  #Setting trainable as false since the embedding is already learned
model.add(embedding_layer)
model.add(GRU(units=32, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='relu'))

#Setting model parameters
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

# In[25]:

#Model summary with pre-trained embedding
    for word, i in tokenizer.word_index.items():
        if i > vocabSize:
            continue
        if word in word2vecModel.wv.vocab.keys():
            embeddingWeights[i] = word2vecModel.wv.get_vector(word)

    XTrainTokens = tokenizer.texts_to_sequences(X_train)
    XTrainPad = pad_sequences(XTrainTokens, maxlen=maxLength, padding='post')
    XTestTokens = tokenizer.texts_to_sequences(X_test)
    XTestPad = pad_sequences(XTestTokens, maxlen=maxLength, padding='post')

    biGRU = Sequential()
    biGRU.add(
        Embedding(vocabSize,
                  embDim,
                  embeddings_initializer=Constant(embeddingWeights),
                  input_length=maxLength,
                  mask_zero=True))
    biGRU.add(Bidirectional(GRU(units=20, dropout=0.3)))
    biGRU.add(Dense(1))

    optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
    lossFunction = tf.keras.losses.MeanSquaredError()
    biGRU.compile(optimizer=optimizer, loss=lossFunction)

    print('\nTraining Deep Learning Model\n')
    biGRU.fit(XTrainPad, y_train, batch_size=256, epochs=20)

    # model.save('my_model.h5')

    preds = biGRU.predict(XTestPad)