Exemplo n.º 1
0
 def call(self, inputs, training=None):
     """Call override to add noise."""
     return core_ops.dense(inputs,
                           self._noise(self.kernel, training),
                           self._noise(self.bias, training),
                           self.activation,
                           dtype=self._compute_dtype_object)
Exemplo n.º 2
0
 def func(self, inputs, **kwargs):
     x = core_ops.dense(inputs,
                        self.kernel,
                        self.bias,
                        self.activation,
                        dtype=self._compute_dtype_object)
     return tf.nn.dropout(x, noise_shape=None, rate=rate)
Exemplo n.º 3
0
    def _call_block(self, inputs: tf.Tensor, state: tf.Tensor, name: str, num_of_params: int) -> tf.Tensor:
        x = tf.concat([inputs, tf.reshape(state, [self.batch_size, -1])], axis=1)

        for i in range(num_of_params):
            cur_name_base = f'{name}_{i}'
            kernel = vars(self)[f"{cur_name_base}_kernel"]
            bias = vars(self)[f"{cur_name_base}_bias"]
            x = dense(x, kernel, bias, tf.keras.activations.relu)
        return x
Exemplo n.º 4
0
 def call(self, inputs):
     kernel = self.kernel + tf.stop_gradient(
         tf.math.multiply(self.kernel, self.kernel_dv) - self.kernel)
     bias = self.bias + tf.stop_gradient(
         tf.math.multiply(self.bias, self.bias_dv) - self.bias)
     return core_ops.dense(inputs,
                           kernel,
                           bias,
                           self.activation,
                           dtype=self._compute_dtype_object)
Exemplo n.º 5
0
    def call(self, x):
        x = dense(inputs=x,
                  kernel=self.kernel * self.scale,
                  bias=self.bias,
                  activation=self.activation,
                  dtype=self._compute_dtype_object)

        if self.use_bias:
            x = tf.nn.bias_add(x, self.bias)
        return x
Exemplo n.º 6
0
    def _dense_call(self, og_call, layer, inputs, *args, **kwargs):
        # TODO: Support layers with no bias.
        kernel = layer.kernel
        bias = layer.bias

        # NOTE: We need to put this in two if statements as autograph is dumb.
        if kernel.ref() not in self.ref_to_logvar:
            # This can happen for non-mergeable variables, so we skip them.
            return og_call(layer, inputs, *args, **kwargs)
        if not self.sampling:
            return og_call(layer, inputs, *args, **kwargs)

        kernel_logvar = self.ref_to_logvar[kernel.ref()]
        bias_logvar = self.ref_to_logvar[bias.ref()]

        output = core_ops.dense(
            inputs,
            kernel,
            bias,
            activations.get(None),
            dtype=layer._compute_dtype_object,
        )

        output_var = core_ops.dense(
            tf.square(inputs) + 1e-2,
            tf.exp(kernel_logvar),
            tf.exp(bias_logvar),
            activations.get(None),
            dtype=layer._compute_dtype_object,
        )

        eps = tf.random.normal(tf.shape(output))
        output += tf.sqrt(output_var) * eps

        if layer.activation is not None:
            output = layer.activation(output)

        return output
Exemplo n.º 7
0
    def call(self, inputs, **kwargs):
        if self.scaling:
            bjorckscaling = self.get_safe_bjorck_scaling()
            bjorckscaling = bjorckscaling * tf.math.reduce_max(
                tf.abs(self.kernel), axis=None)
        else:
            bjorckscaling = 1.0

        ortho_w = bjorck_orthonormalize(self.kernel / bjorckscaling,
                                        beta=self.bjorck_beta,
                                        iters=self.bjorck_iter,
                                        order=self.bjorck_order)

        # ortho_w_t = tf.transpose(ortho_w)

        return core_ops.dense(inputs,
                              ortho_w,
                              self.bias,
                              self.activation,
                              dtype=self._compute_dtype_object)
Exemplo n.º 8
0
 def noised():
     kernel_sigma = tf.tensordot(self.sigma[self.p:],
                                 self.sigma[:self.p],
                                 axes=0)
     kernel = self.kernel + kernel_sigma * K.random_normal(
         shape=(self.q, self.p), mean=0., stddev=1., dtype=inputs.dtype)
     bias = self.bias
     if self.bias is not None:
         bias = bias + self.sigma[:self.p] * K.random_normal(
             shape=(self.p, ), mean=0., stddev=1., dtype=inputs.dtype)
     if tf.config.list_physical_devices('GPU'):
         return core_ops_dense(inputs,
                               kernel,
                               bias,
                               self.activation,
                               dtype=self._compute_dtype,
                               units=self.p)
     else:
         return core_ops.dense(inputs,
                               kernel,
                               bias,
                               self.activation,
                               dtype=self._compute_dtype_object)
Exemplo n.º 9
0
 def call(self, inputs):
     return core_ops.dense(inputs,
                           self.kernel,
                           self.bias,
                           self.activation,
                           dtype=self._compute_dtype_object)