def test_combiner_computation(self,
                               data,
                               expected_accumulator_output,
                               expected_extract_output,
                               compute_idf=True):
     combiner = categorical_encoding._CategoricalEncodingCombiner(
         compute_idf=compute_idf)
     expected_accumulator = combiner._create_accumulator()
     expected_accumulator = self.update_accumulator(
         expected_accumulator, expected_accumulator_output)
     self.validate_accumulator_computation(combiner, data,
                                           expected_accumulator)
     self.validate_accumulator_extract(combiner, data,
                                       expected_extract_output)
 def test_combiner_api_compatibility_int_mode(self):
     data = np.array([[1, 2, 3, 4], [1, 2, 3, 0]])
     combiner = categorical_encoding._CategoricalEncodingCombiner(
         compute_idf=False)
     expected_accumulator_output = {
         "max_element": np.array(4),
         "num_documents": np.array(2),
     }
     expected_extract_output = {
         "num_elements": np.array(5),
     }
     expected_accumulator = combiner._create_accumulator()
     expected_accumulator = self.update_accumulator(
         expected_accumulator, expected_accumulator_output)
     self.validate_accumulator_serialize_and_deserialize(
         combiner, data, expected_accumulator)
     self.validate_accumulator_uniqueness(combiner, data)
     self.validate_accumulator_extract(combiner, data,
                                       expected_extract_output)