Exemplo n.º 1
0
  def test_specify_state_with_masking(self):
    num_states = 2
    timesteps = 3
    embedding_dim = 4
    units = 3
    num_samples = 2

    inputs = keras.Input((timesteps, embedding_dim))
    _ = keras.layers.Masking()(inputs)
    initial_state = [keras.Input((units,)) for _ in range(num_states)]
    output = rnn.LSTM(units)(
        inputs, initial_state=initial_state)

    model = keras.models.Model([inputs] + initial_state, output)
    model.compile(
        loss='categorical_crossentropy',
        optimizer=gradient_descent.GradientDescentOptimizer(0.01))

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    initial_state = [
        np.random.random((num_samples, units)) for _ in range(num_states)
    ]
    targets = np.random.random((num_samples, units))
    model.train_on_batch([inputs] + initial_state, targets)
Exemplo n.º 2
0
  def test_reset_states_with_values(self):
    num_states = 2
    timesteps = 3
    embedding_dim = 4
    units = 3
    num_samples = 2

    layer = rnn.LSTM(units, stateful=True)
    layer.build((num_samples, timesteps, embedding_dim))
    initial_weight_count = len(layer.weights)
    layer.reset_states()
    assert len(layer.states) == num_states
    assert layer.states[0] is not None
    self.assertAllClose(
        keras.backend.eval(layer.states[0]),
        np.zeros(keras.backend.int_shape(layer.states[0])),
        atol=1e-4)
    state_shapes = [keras.backend.int_shape(state) for state in layer.states]
    values = [np.ones(shape) for shape in state_shapes]
    if len(values) == 1:
      values = values[0]
    layer.reset_states(values)
    self.assertAllClose(
        keras.backend.eval(layer.states[0]),
        np.ones(keras.backend.int_shape(layer.states[0])),
        atol=1e-4)

    # Test with invalid data
    with self.assertRaises(ValueError):
      layer.reset_states([1] * (len(layer.states) + 1))

    self.assertEqual(initial_weight_count, len(layer.weights))
    # Variables in "states" shouldn't show up in .weights
    layer.states = nest.map_structure(variables.Variable, values)
    layer.reset_states()
    self.assertEqual(initial_weight_count, len(layer.weights))
Exemplo n.º 3
0
  def test_specify_initial_state_non_keras_tensor(self):
    num_states = 2
    timesteps = 3
    embedding_dim = 4
    units = 3
    num_samples = 2

    # Test with non-Keras tensor
    inputs = keras.Input((timesteps, embedding_dim))
    initial_state = [
        keras.backend.random_normal_variable((num_samples, units), 0, 1)
        for _ in range(num_states)
    ]
    layer = rnn.LSTM(units)
    output = layer(inputs, initial_state=initial_state)

    model = keras.models.Model(inputs, output)
    model.compile(
        loss='categorical_crossentropy',
        optimizer=gradient_descent.GradientDescentOptimizer(0.01))

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    targets = np.random.random((num_samples, units))
    model.train_on_batch(inputs, targets)
Exemplo n.º 4
0
    def test_return_state(self):
        if test.is_built_with_rocm():
            self.skipTest('Skipping the test as ROCm MIOpen does not '
                          'support padded input yet.')
        num_states = 2
        timesteps = 3
        embedding_dim = 4
        units = 3
        num_samples = 2

        inputs = keras.Input(batch_shape=(num_samples, timesteps,
                                          embedding_dim))
        masked = keras.layers.Masking()(inputs)
        layer = rnn.LSTM(units, return_state=True, stateful=True)
        outputs = layer(masked)
        state = outputs[1:]
        assert len(state) == num_states
        model = keras.models.Model(inputs, state[0])

        inputs = np.random.random((num_samples, timesteps, embedding_dim))
        state = model.predict(inputs)
        self.assertAllClose(keras.backend.eval(layer.states[0]),
                            state,
                            atol=1e-4)
Exemplo n.º 5
0
    def test_time_major_and_go_backward(self, time_major, go_backwards):
        input_shape = 10
        rnn_state_size = 8
        timestep = 4
        batch = 100

        x_train = np.random.random((batch, timestep, input_shape))

        def build_model(layer_cls):
            inputs = keras.layers.Input(shape=[timestep, input_shape],
                                        dtype=dtypes.float32)
            layer = layer_cls(rnn_state_size,
                              recurrent_activation='sigmoid',
                              time_major=time_major,
                              return_sequences=True,
                              go_backwards=go_backwards)
            if time_major:
                converted_input = keras.layers.Lambda(
                    lambda t: array_ops.transpose(t, [1, 0, 2]))(inputs)
                outputs = layer(converted_input)
                outputs = keras.layers.Lambda(
                    lambda t: array_ops.transpose(t, [1, 0, 2]))(outputs)
            else:
                outputs = layer(inputs)
            return keras.models.Model(inputs, outputs)

        lstm_model = build_model(rnn_v1.LSTM)
        y_ref = lstm_model.predict(x_train)
        weights = lstm_model.get_weights()

        lstm_v2_model = build_model(rnn.LSTM)
        lstm_v2_model.set_weights(weights)
        y = lstm_v2_model.predict(x_train)

        self.assertAllClose(y, y_ref)

        input_shape = 10
        rnn_state_size = 8
        output_shape = 8
        timestep = 4
        batch = 100
        epoch = 10

        (x_train,
         y_train), _ = testing_utils.get_test_data(train_samples=batch,
                                                   test_samples=0,
                                                   input_shape=(timestep,
                                                                input_shape),
                                                   num_classes=output_shape)
        y_train = keras.utils.to_categorical(y_train, output_shape)

        layer = rnn.LSTM(rnn_state_size)

        inputs = keras.layers.Input(shape=[timestep, input_shape],
                                    dtype=dtypes.float32)

        outputs = layer(inputs)
        model = keras.models.Model(inputs, outputs)
        model.compile('rmsprop', loss='mse')
        model.fit(x_train, y_train, epochs=epoch)
        model.evaluate(x_train, y_train)
        model.predict(x_train)
Exemplo n.º 6
0
class LayerCorrectnessTest(keras_parameterized.TestCase):

  def setUp(self):
    super(LayerCorrectnessTest, self).setUp()
    # Set two virtual CPUs to test MirroredStrategy with multiple devices
    cpus = config_module.list_physical_devices('CPU')
    config_module.set_logical_device_configuration(cpus[0], [
        context.LogicalDeviceConfiguration(),
        context.LogicalDeviceConfiguration(),
    ])

  def _create_model_from_layer(self, layer, input_shapes):
    inputs = [layers.Input(batch_input_shape=s) for s in input_shapes]
    if len(inputs) == 1:
      inputs = inputs[0]
    y = layer(inputs)
    model = models.Model(inputs, y)
    model.compile('sgd', 'mse')
    return model

  @parameterized.named_parameters(
      ('LeakyReLU', advanced_activations.LeakyReLU, (2, 2)),
      ('PReLU', advanced_activations.PReLU, (2, 2)),
      ('ELU', advanced_activations.ELU, (2, 2)),
      ('ThresholdedReLU', advanced_activations.ThresholdedReLU, (2, 2)),
      ('Softmax', advanced_activations.Softmax, (2, 2)),
      ('ReLU', advanced_activations.ReLU, (2, 2)),
      ('Conv1D', lambda: convolutional.Conv1D(2, 2), (2, 2, 1)),
      ('Conv2D', lambda: convolutional.Conv2D(2, 2), (2, 2, 2, 1)),
      ('Conv3D', lambda: convolutional.Conv3D(2, 2), (2, 2, 2, 2, 1)),
      ('Conv2DTranspose', lambda: convolutional.Conv2DTranspose(2, 2),
       (2, 2, 2, 2)),
      ('SeparableConv2D', lambda: convolutional.SeparableConv2D(2, 2),
       (2, 2, 2, 1)),
      ('DepthwiseConv2D', lambda: convolutional.DepthwiseConv2D(2, 2),
       (2, 2, 2, 1)),
      ('UpSampling2D', convolutional.UpSampling2D, (2, 2, 2, 1)),
      ('ZeroPadding2D', convolutional.ZeroPadding2D, (2, 2, 2, 1)),
      ('Cropping2D', convolutional.Cropping2D, (2, 3, 3, 1)),
      ('ConvLSTM2D',
       lambda: convolutional_recurrent.ConvLSTM2D(4, kernel_size=(2, 2)),
       (4, 4, 4, 4, 4)),
      ('Dense', lambda: core.Dense(2), (2, 2)),
      ('Dropout', lambda: core.Dropout(0.5), (2, 2)),
      ('SpatialDropout2D', lambda: core.SpatialDropout2D(0.5), (2, 2, 2, 2)),
      ('Activation', lambda: core.Activation('sigmoid'), (2, 2)),
      ('Reshape', lambda: core.Reshape((1, 4, 1)), (2, 2, 2)),
      ('Permute', lambda: core.Permute((2, 1)), (2, 2, 2)),
      ('Attention', dense_attention.Attention, [(2, 2, 3), (2, 3, 3),
                                                (2, 3, 3)]),
      ('AdditiveAttention', dense_attention.AdditiveAttention, [(2, 2, 3),
                                                                (2, 3, 3),
                                                                (2, 3, 3)]),
      ('Embedding', lambda: embeddings.Embedding(4, 4),
       (2, 4), 2e-3, 2e-3, np.random.randint(4, size=(2, 4))),
      ('LocallyConnected1D', lambda: local.LocallyConnected1D(2, 2), (2, 2, 1)),
      ('LocallyConnected2D', lambda: local.LocallyConnected2D(2, 2),
       (2, 2, 2, 1)),
      ('Add', merge.Add, [(2, 2), (2, 2)]),
      ('Subtract', merge.Subtract, [(2, 2), (2, 2)]),
      ('Multiply', merge.Multiply, [(2, 2), (2, 2)]),
      ('Average', merge.Average, [(2, 2), (2, 2)]),
      ('Maximum', merge.Maximum, [(2, 2), (2, 2)]),
      ('Minimum', merge.Minimum, [(2, 2), (2, 2)]),
      ('Concatenate', merge.Concatenate, [(2, 2), (2, 2)]),
      ('Dot', lambda: merge.Dot(1), [(2, 2), (2, 2)]),
      ('GaussianNoise', lambda: noise.GaussianNoise(0.5), (2, 2)),
      ('GaussianDropout', lambda: noise.GaussianDropout(0.5), (2, 2)),
      ('AlphaDropout', lambda: noise.AlphaDropout(0.5), (2, 2)),
      ('BatchNormalization', normalization_v2.BatchNormalization,
       (2, 2), 1e-2, 1e-2),
      ('LayerNormalization', normalization.LayerNormalization, (2, 2)),
      ('LayerNormalizationUnfused',
       lambda: normalization.LayerNormalization(axis=1), (2, 2, 2)),
      ('MaxPooling2D', pooling.MaxPooling2D, (2, 2, 2, 1)),
      ('AveragePooling2D', pooling.AveragePooling2D, (2, 2, 2, 1)),
      ('GlobalMaxPooling2D', pooling.GlobalMaxPooling2D, (2, 2, 2, 1)),
      ('GlobalAveragePooling2D', pooling.GlobalAveragePooling2D, (2, 2, 2, 1)),
      ('SimpleRNN', lambda: recurrent.SimpleRNN(units=4),
       (4, 4, 4), 1e-2, 1e-2),
      ('GRU', lambda: recurrent.GRU(units=4), (4, 4, 4)),
      ('LSTM', lambda: recurrent.LSTM(units=4), (4, 4, 4)),
      ('GRUV2', lambda: recurrent_v2.GRU(units=4), (4, 4, 4)),
      ('LSTMV2', lambda: recurrent_v2.LSTM(units=4), (4, 4, 4)),
      ('TimeDistributed', lambda: wrappers.TimeDistributed(core.Dense(2)),
       (2, 2, 2)),
      ('Bidirectional',
       lambda: wrappers.Bidirectional(recurrent.SimpleRNN(units=4)), (2, 2, 2)),
      ('AttentionLayerCausal', lambda: dense_attention.Attention(causal=True), [
          (2, 2, 3), (2, 3, 3), (2, 3, 3)
      ]),
      ('AdditiveAttentionLayerCausal',
       lambda: dense_attention.AdditiveAttention(causal=True), [(2, 3, 4),
                                                                (2, 3, 4),
                                                                (2, 3, 4)]),
  )
  def test_layer(self, f32_layer_fn, input_shape, rtol=2e-3, atol=2e-3,
                 input_data=None):
    """Tests a layer by comparing the float32 and mixed precision weights.

    A float32 layer, a mixed precision layer, and a distributed mixed precision
    layer are run. The three layers are identical other than their dtypes and
    distribution strategies. The outputs after predict() and weights after fit()
    are asserted to be close.

    Args:
      f32_layer_fn: A function returning a float32 layer. The other two layers
        will automatically be created from this
      input_shape: The shape of the input to the layer, including the batch
        dimension. Or a list of shapes if the layer takes multiple inputs.
      rtol: The relative tolerance to be asserted.
      atol: The absolute tolerance to be asserted.
      input_data: A Numpy array with the data of the input. If None, input data
        will be randomly generated
    """

    if f32_layer_fn == convolutional.ZeroPadding2D and \
       test.is_built_with_rocm():
      return
    if isinstance(input_shape[0], int):
      input_shapes = [input_shape]
    else:
      input_shapes = input_shape
    strategy = create_mirrored_strategy()
    f32_layer = f32_layer_fn()

    # Create the layers
    assert f32_layer.dtype == f32_layer._compute_dtype == 'float32'
    config = f32_layer.get_config()
    config['dtype'] = policy.Policy('mixed_float16')
    mp_layer = f32_layer.__class__.from_config(config)
    distributed_mp_layer = f32_layer.__class__.from_config(config)

    # Compute per_replica_input_shapes for the distributed model
    global_batch_size = input_shapes[0][0]
    assert global_batch_size % strategy.num_replicas_in_sync == 0, (
        'The number of replicas, %d, does not divide the global batch size of '
        '%d' % (strategy.num_replicas_in_sync, global_batch_size))
    per_replica_batch_size = (
        global_batch_size // strategy.num_replicas_in_sync)
    per_replica_input_shapes = [(per_replica_batch_size,) + s[1:]
                                for s in input_shapes]

    # Create the models
    f32_model = self._create_model_from_layer(f32_layer, input_shapes)
    mp_model = self._create_model_from_layer(mp_layer, input_shapes)
    with strategy.scope():
      distributed_mp_model = self._create_model_from_layer(
          distributed_mp_layer, per_replica_input_shapes)

    # Set all model weights to the same values
    f32_weights = f32_model.get_weights()
    mp_model.set_weights(f32_weights)
    distributed_mp_model.set_weights(f32_weights)

    # Generate input data
    if input_data is None:
      # Cast inputs to float16 to avoid measuring error from having f16 layers
      # cast to float16.
      input_data = [np.random.normal(size=s).astype('float16')
                    for s in input_shapes]
      if len(input_data) == 1:
        input_data = input_data[0]

    # Assert all models have close outputs.
    f32_output = f32_model.predict(input_data)
    mp_output = mp_model.predict(input_data)
    self.assertAllClose(
        mp_output, f32_output, rtol=rtol, atol=atol)
    self.assertAllClose(
        distributed_mp_model.predict(input_data), f32_output, rtol=rtol,
        atol=atol)

    # Run fit() on models
    output = np.random.normal(size=f32_model.outputs[0].shape).astype('float16')
    for model in f32_model, mp_model, distributed_mp_model:
      model.fit(input_data, output, batch_size=global_batch_size)

    # Assert all models have close weights
    f32_weights = f32_model.get_weights()
    self.assertAllClose(
        mp_model.get_weights(), f32_weights, rtol=rtol, atol=atol)
    self.assertAllClose(
        distributed_mp_model.get_weights(), f32_weights, rtol=rtol, atol=atol)
    def test_use_on_default_activation_with_gpu_kernel(self):
        layer = rnn.LSTM(1, activation=nn.tanh)
        self.assertTrue(layer._could_use_gpu_kernel)

        layer = rnn.LSTM(1, recurrent_activation=nn.sigmoid)
        self.assertTrue(layer._could_use_gpu_kernel)
Exemplo n.º 8
0
 def test_lstm(self):
     self._test_layer(recurrent_v2.LSTM(units=4, return_sequences=True),
                      input_shape=(4, 4, 4))