Exemplo n.º 1
0
    def test_wide_deep_model_with_multi_outputs(self):
        with context.eager_mode():
            inp = input_layer.Input(shape=(1, ), name='linear')
            l = linear.LinearModel(units=2, use_bias=False)(inp)
            l1, l2 = array_ops.split(l, num_or_size_splits=2, axis=1)
            linear_model = training.Model(inp, [l1, l2])
            linear_model.set_weights([np.asarray([[0.5, 0.3]])])
            h = core.Dense(units=2, use_bias=False)(inp)
            h1, h2 = array_ops.split(h, num_or_size_splits=2, axis=1)
            dnn_model = training.Model(inp, [h1, h2])
            dnn_model.set_weights([np.asarray([[0.1, -0.5]])])
            wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
            inp_np = np.asarray([[1.]])
            out1, out2 = wide_deep_model(inp_np)
            # output should be (0.5 + 0.1), and (0.3 - 0.5)
            self.assertAllClose([[0.6]], out1)
            self.assertAllClose([[-0.2]], out2)

            wide_deep_model = wide_deep.WideDeepModel(linear_model,
                                                      dnn_model,
                                                      activation='relu')
            out1, out2 = wide_deep_model(inp_np)
            # output should be relu((0.5 + 0.1)), and relu((0.3 - 0.5))
            self.assertAllClose([[0.6]], out1)
            self.assertAllClose([[0.]], out2)
Exemplo n.º 2
0
 def test_wide_deep_model_backprop(self):
     with self.cached_session():
         linear_model = linear.LinearModel(units=1,
                                           kernel_initializer='zeros')
         dnn_model = sequential.Sequential(
             [core.Dense(units=1, kernel_initializer='zeros')])
         wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
         linear_inp = np.array([1.])
         dnn_inp = np.array([1.])
         inputs = [linear_inp, dnn_inp]
         output = linear_inp + 2 * dnn_inp
         linear_opt = gradient_descent.SGD(learning_rate=.1)
         dnn_opt = gradient_descent.SGD(learning_rate=.3)
         wide_deep_model.compile(
             optimizer=[linear_opt, dnn_opt],
             loss='mse',
             metrics=[],
             run_eagerly=testing_utils.should_run_eagerly(),
             experimental_run_tf_function=testing_utils.
             should_run_tf_function())
         self.evaluate(variables.global_variables_initializer())
         wide_deep_model.fit(inputs, output, epochs=1)
         self.assertAllClose(
             [[0.3]],
             self.evaluate(
                 wide_deep_model.linear_model.dense_layers[0].kernel))
         self.assertAllClose(
             [[0.9]],
             self.evaluate(wide_deep_model.dnn_model.layers[0].kernel))
Exemplo n.º 3
0
 def test_wide_deep_model_with_two_feature_columns(self):
     vocab_list = ['alpha', 'beta', 'gamma']
     vocab_val = [0.4, 0.6, 0.9]
     data = np.random.choice(vocab_list, size=256)
     y = np.zeros_like(data, dtype=np.float32)
     for vocab, val in zip(vocab_list, vocab_val):
         indices = np.where(data == vocab)
         y[indices] = val + np.random.uniform(
             low=-0.01, high=0.01, size=indices[0].shape)
     cat_column = fc.categorical_column_with_vocabulary_list(
         key='symbol', vocabulary_list=vocab_list)
     ind_column = fc.indicator_column(cat_column)
     emb_column = fc.embedding_column(cat_column, dimension=5)
     linear_feature_layer = dense_features_v2.DenseFeatures([ind_column])
     linear_model = linear.LinearModel(use_bias=False,
                                       kernel_initializer='zeros')
     combined_linear = sequential.Sequential(
         [linear_feature_layer, linear_model])
     dnn_model = sequential.Sequential([core.Dense(units=1)])
     dnn_feature_layer = dense_features_v2.DenseFeatures([emb_column])
     combined_dnn = sequential.Sequential([dnn_feature_layer, dnn_model])
     wide_deep_model = wide_deep.WideDeepModel(combined_linear,
                                               combined_dnn)
     opt = gradient_descent.SGD(learning_rate=0.1)
     wide_deep_model.compile(opt,
                             'mse', [],
                             run_eagerly=testing_utils.should_run_eagerly(),
                             experimental_run_tf_function=testing_utils.
                             should_run_tf_function())
     wide_deep_model.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
     self.assertEqual(3, linear_model.inputs[0].shape[1])
     self.assertEqual(5, dnn_model.inputs[0].shape[1])
Exemplo n.º 4
0
 def test_wide_deep_model_with_sub_model_trained(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(
         linear.LinearModel(units=1),
         sequential.Sequential([core.Dense(units=1, input_dim=3)]))
     linear_inp = np.random.uniform(low=-5, high=5, size=(64, 2))
     dnn_inp = np.random.uniform(low=-5, high=5, size=(64, 3))
     inputs = [linear_inp, dnn_inp]
     output = .3 * linear_inp[:, 0] + .2 * dnn_inp[:, 1]
     linear_model.compile(optimizer='sgd',
                          loss='mse',
                          metrics=[],
                          run_eagerly=testing_utils.should_run_eagerly(),
                          experimental_run_tf_function=testing_utils.
                          should_run_tf_function())
     dnn_model.compile(optimizer='adam',
                       loss='mse',
                       metrics=[],
                       run_eagerly=testing_utils.should_run_eagerly(),
                       experimental_run_tf_function=testing_utils.
                       should_run_tf_function())
     linear_model.fit(linear_inp, output, epochs=50)
     dnn_model.fit(dnn_inp, output, epochs=50)
     wide_deep_model.compile(optimizer=['sgd', 'adam'],
                             loss='mse',
                             metrics=[],
                             run_eagerly=testing_utils.should_run_eagerly(),
                             experimental_run_tf_function=testing_utils.
                             should_run_tf_function())
     wide_deep_model.fit(inputs, output, epochs=50)
Exemplo n.º 5
0
 def test_wide_deep_model_as_layer(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1)])
     linear_input = input_layer.Input(shape=(3, ), name='linear')
     dnn_input = input_layer.Input(shape=(5, ), name='dnn')
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     wide_deep_output = wide_deep_model((linear_input, dnn_input))
     input_b = input_layer.Input(shape=(1, ), name='b')
     output_b = core.Dense(units=1)(input_b)
     model = training.Model(inputs=[linear_input, dnn_input, input_b],
                            outputs=[wide_deep_output + output_b])
     linear_input_np = np.random.uniform(low=-5, high=5, size=(64, 3))
     dnn_input_np = np.random.uniform(low=-5, high=5, size=(64, 5))
     input_b_np = np.random.uniform(low=-5, high=5, size=(64, ))
     output_np = linear_input_np[:,
                                 0] + .2 * dnn_input_np[:, 1] + input_b_np
     model.compile(optimizer='sgd',
                   loss='mse',
                   metrics=[],
                   run_eagerly=testing_utils.should_run_eagerly(),
                   experimental_run_tf_function=testing_utils.
                   should_run_tf_function())
     model.fit([linear_input_np, dnn_input_np, input_b_np],
               output_np,
               epochs=5)
    def test_train_premade_widedeep_model_with_feature_layers(self):
        vocab_list = ['alpha', 'beta', 'gamma']
        vocab_val = [0.4, 0.6, 0.9]
        data = np.random.choice(vocab_list, size=256)
        y = np.zeros_like(data, dtype=np.float32)
        for vocab, val in zip(vocab_list, vocab_val):
            indices = np.where(data == vocab)
            y[indices] = val + np.random.uniform(
                low=-0.01, high=0.01, size=indices[0].shape)
        cat_column = tf.feature_column.categorical_column_with_vocabulary_list(
            key='symbol', vocabulary_list=vocab_list)
        ind_column = tf.feature_column.indicator_column(cat_column)
        # TODO(tanzheny): use emb column for dense part once b/139667019 is fixed.
        # emb_column = feature_column.embedding_column(cat_column, dimension=5)
        keras_input = keras.layers.Input(name='symbol',
                                         shape=3,
                                         dtype=tf.dtypes.string)

        # build linear part with feature layer.
        linear_feature_layer = dense_features.DenseFeatures([ind_column])
        linear_model = linear.LinearModel(units=1,
                                          name='Linear',
                                          kernel_initializer='zeros')
        combined_linear = keras.Sequential(
            [linear_feature_layer, linear_model])

        # build dnn part with feature layer.
        dnn_feature_layer = dense_features.DenseFeatures([ind_column])
        dense_layer = keras.layers.Dense(units=1,
                                         name='DNNDense',
                                         kernel_initializer='zeros')
        combined_dnn = keras.Sequential([dnn_feature_layer, dense_layer])

        # build and compile wide deep.
        wide_deep_model = wide_deep.WideDeepModel(combined_linear,
                                                  combined_dnn)
        wide_deep_model._set_inputs({'symbol': keras_input})
        sgd_opt = gradient_descent.SGD(0.1)
        adam_opt = adam.Adam(0.1)
        wide_deep_model.compile([sgd_opt, adam_opt], 'mse', ['mse'])

        # build estimator.
        train_input_fn = numpy_io.numpy_input_fn(x={'symbol': data},
                                                 y=y,
                                                 num_epochs=20,
                                                 shuffle=False)
        eval_input_fn = numpy_io.numpy_input_fn(x={'symbol': data},
                                                y=y,
                                                num_epochs=20,
                                                shuffle=False)
        est = keras_lib.model_to_estimator(keras_model=wide_deep_model,
                                           config=self._config,
                                           checkpoint_format='saver')

        before_eval_results = est.evaluate(input_fn=eval_input_fn, steps=1)
        est.train(input_fn=train_input_fn, steps=20)
        after_eval_results = est.evaluate(input_fn=eval_input_fn, steps=1)
        self.assertLess(after_eval_results['loss'],
                        before_eval_results['loss'])
        self.assertLess(after_eval_results['loss'], 0.1)
Exemplo n.º 7
0
 def test_config(self):
   linear_model = linear.LinearModel(units=1)
   dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
   wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
   config = wide_deep_model.get_config()
   cloned_wide_deep_model = wide_deep.WideDeepModel.from_config(config)
   self.assertEqual(linear_model.units,
                    cloned_wide_deep_model.linear_model.units)
   self.assertEqual(dnn_model.layers[0].units,
                    cloned_wide_deep_model.dnn_model.layers[0].units)
Exemplo n.º 8
0
 def test_wide_deep_model_with_single_input(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     inputs = np.random.uniform(low=-5, high=5, size=(64, 3))
     output = .3 * inputs[:, 0]
     wide_deep_model.compile(optimizer=['sgd', 'adam'],
                             loss='mse',
                             metrics=[],
                             run_eagerly=testing_utils.should_run_eagerly())
     wide_deep_model.fit(inputs, output, epochs=5)
Exemplo n.º 9
0
  def test_config_with_custom_objects(self):

    def my_activation(x):
      return x

    linear_model = linear.LinearModel(units=1)
    dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
    wide_deep_model = wide_deep.WideDeepModel(
        linear_model, dnn_model, activation=my_activation)
    config = wide_deep_model.get_config()
    cloned_wide_deep_model = wide_deep.WideDeepModel.from_config(
        config, custom_objects={'my_activation': my_activation})
    self.assertEqual(cloned_wide_deep_model.activation, my_activation)
Exemplo n.º 10
0
 def test_wide_deep_model(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     linear_inp = np.random.uniform(low=-5, high=5, size=(64, 2))
     dnn_inp = np.random.uniform(low=-5, high=5, size=(64, 3))
     inputs = [linear_inp, dnn_inp]
     output = .3 * linear_inp[:, 0] + .2 * dnn_inp[:, 1]
     wide_deep_model.compile(optimizer=['sgd', 'adam'],
                             loss='mse',
                             metrics=[],
                             run_eagerly=testing_utils.should_run_eagerly())
     wide_deep_model.fit(inputs, output, epochs=5)
     self.assertTrue(wide_deep_model.built)
Exemplo n.º 11
0
 def test_wide_deep_model(self, distribution, data_fn):
     with distribution.scope():
         linear_model = linear.LinearModel(units=1)
         dnn_model = sequential.Sequential([core.Dense(units=1)])
         wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
         linear_opt = gradient_descent.SGD(learning_rate=0.05)
         dnn_opt = adagrad.Adagrad(learning_rate=0.1)
         wide_deep_model.compile(optimizer=[linear_opt, dnn_opt],
                                 loss='mse')
         if data_fn == 'numpy':
             inputs, output = get_numpy()
             hist = wide_deep_model.fit(inputs, output, epochs=5)
         else:
             hist = wide_deep_model.fit(get_dataset(), epochs=5)
         self.assertLess(hist.history['loss'][4], 0.2)
Exemplo n.º 12
0
 def test_wide_deep_model_with_single_feature_column(self):
     vocab_list = ['alpha', 'beta', 'gamma']
     vocab_val = [0.4, 0.6, 0.9]
     data = np.random.choice(vocab_list, size=256)
     y = np.zeros_like(data, dtype=np.float32)
     for vocab, val in zip(vocab_list, vocab_val):
         indices = np.where(data == vocab)
         y[indices] = val + np.random.uniform(
             low=-0.01, high=0.01, size=indices[0].shape)
     cat_column = feature_column_v2.categorical_column_with_vocabulary_list(
         key='symbol', vocabulary_list=vocab_list)
     ind_column = feature_column_v2.indicator_column(cat_column)
     dense_feature_layer = dense_features_v2.DenseFeatures([ind_column])
     linear_model = linear.LinearModel(use_bias=False,
                                       kernel_initializer='zeros')
     dnn_model = keras.Sequential([keras.layers.Dense(units=1)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     combined = keras.Sequential([dense_feature_layer, wide_deep_model])
     opt = gradient_descent.SGD(learning_rate=0.1)
     combined.compile(opt,
                      'mse', [],
                      run_eagerly=testing_utils.should_run_eagerly())
     combined.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)