Exemplo n.º 1
0
def convert_to_list(values, sparse_default_value=None):
  """Convert a TensorLike, CompositeTensor, or ndarray into a Python list."""
  if tf_utils.is_ragged(values):
    # There is a corner case when dealing with ragged tensors: if you get an
    # actual RaggedTensor (not a RaggedTensorValue) passed in non-eager mode,
    # you can't call to_list() on it without evaluating it first. However,
    # because we don't yet fully support composite tensors across Keras,
    # K.get_value() won't evaluate the tensor.
    # TODO(momernick): Get Keras to recognize composite tensors as Tensors
    # and then replace this with a call to K.get_value.
    if (isinstance(values, ragged_tensor.RaggedTensor) and
        not context.executing_eagerly()):
      values = K.get_session(values).run(values)
    values = values.to_list()

  if isinstance(values,
                (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
    if sparse_default_value is None:
      if dtypes.as_dtype(values.values.dtype) == dtypes.string:
        sparse_default_value = ''
      else:
        sparse_default_value = -1
    dense_tensor = sparse_ops.sparse_tensor_to_dense(
        values, default_value=sparse_default_value)
    values = K.get_value(dense_tensor)

  if isinstance(values, ops.Tensor):
    values = K.get_value(values)

  # We may get passed a ndarray or the code above may give us a ndarray.
  # In either case, we want to force it into a standard python list.
  if isinstance(values, np.ndarray):
    values = values.tolist()

  return values
Exemplo n.º 2
0
    def call(self, inputs):
        bins = [math_ops.cast(array_ops.squeeze(self.bins), dtypes.float32)]

        def _bucketize_fn(inputs):
            return gen_boosted_trees_ops.BoostedTreesBucketize(
                float_values=[math_ops.cast(inputs, dtypes.float32)],
                bucket_boundaries=bins)[0]

        if tf_utils.is_ragged(inputs):
            integer_buckets = ragged_functional_ops.map_flat_values(
                _bucketize_fn, inputs)
            # Ragged map_flat_values doesn't touch the non-values tensors in the
            # ragged composite tensor. If this op is the only op a Keras model,
            # this can cause errors in Graph mode, so wrap the tensor in an identity.
            return array_ops.identity(integer_buckets)
        elif isinstance(inputs, sparse_tensor.SparseTensor):
            return sparse_tensor.SparseTensor(
                indices=array_ops.identity(inputs.indices),
                values=_bucketize_fn(inputs.values),
                dense_shape=array_ops.identity(inputs.dense_shape))
        else:
            static_shape = inputs.get_shape()
            if any(dim is None for dim in static_shape.as_list()[1:]):
                raise NotImplementedError(
                    "Discretization Layer requires known non-batch shape,"
                    "found {}".format(static_shape))

            dynamic_shape = array_ops.shape_v2(inputs)
            # BoostedTreesBucketize only handles rank 1 inputs. We need to flatten our
            # inputs after batch size and vectorized_map over each sample.
            reshaped = array_ops.reshape(inputs, [dynamic_shape[0], -1])
            return array_ops.reshape(
                control_flow_ops.vectorized_map(_bucketize_fn, reshaped),
                dynamic_shape)
    def call(self, inputs):
        if isinstance(inputs, (list, tuple, np.ndarray)):
            inputs = ops.convert_to_tensor_v2_with_dispatch(inputs)

        inputs = self._preprocess(inputs)

        # If we're not doing any output processing, return right away.
        if self._output_mode is None:
            return inputs

        lookup_data = self._index_lookup_layer(inputs)
        if self._output_mode == INT:

            # Maybe trim the output (NOOP if self._output_sequence_length is None).
            output_tensor = lookup_data[..., :self._output_sequence_length]

            output_shape = output_tensor.shape.as_list()
            output_shape[-1] = self._output_sequence_length

            # If it is a ragged tensor, convert it to dense with correct shape.
            if tf_utils.is_ragged(output_tensor):
                return output_tensor.to_tensor(default_value=0,
                                               shape=output_shape)

            if self._output_sequence_length is None:
                return output_tensor

            padding, _ = array_ops.required_space_to_batch_paddings(
                output_tensor.shape, output_shape)
            return array_ops.pad(output_tensor, padding)

        return lookup_data
Exemplo n.º 4
0
 def _process_single_input(self, inputs):
     # Converts integer inputs to string.
     if inputs.dtype.is_integer:
         if isinstance(inputs, sparse_tensor.SparseTensor):
             inputs = sparse_tensor.SparseTensor(
                 indices=inputs.indices,
                 values=string_ops.as_string(inputs.values),
                 dense_shape=inputs.dense_shape)
         else:
             inputs = string_ops.as_string(inputs)
     str_to_hash_bucket = self._get_string_to_hash_bucket_fn()
     if tf_utils.is_ragged(inputs):
         return ragged_functional_ops.map_flat_values(
             str_to_hash_bucket,
             inputs,
             num_buckets=self.num_bins,
             name='hash')
     elif isinstance(inputs, sparse_tensor.SparseTensor):
         sparse_values = inputs.values
         sparse_hashed_values = str_to_hash_bucket(sparse_values,
                                                   self.num_bins,
                                                   name='hash')
         return sparse_tensor.SparseTensor(indices=inputs.indices,
                                           values=sparse_hashed_values,
                                           dense_shape=inputs.dense_shape)
     else:
         return str_to_hash_bucket(inputs, self.num_bins, name='hash')
Exemplo n.º 5
0
  def call(self, inputs):
    if isinstance(inputs, (list, tuple, np.ndarray)):
      inputs = ops.convert_to_tensor_v2_with_dispatch(inputs)

    if not self.max_tokens and self._vocab_size is None:
      raise ValueError("You must set the layer's vocabulary before calling it. "
                       "Either pass a `vocabulary` argument to the layer, or "
                       "call `layer.adapt(dataset)` with some sample data.")
    self._called = True
    if self._key_dtype == dtypes.int64 and inputs.dtype == dtypes.int32:
      inputs = math_ops.cast(inputs, dtypes.int64)
    lookup_result = self._table_handler.lookup(inputs)

    lookup_checks = []

    if self.num_oov_indices == 0 and not self.invert:
      if tf_utils.is_sparse(inputs):
        lookup_values = lookup_result.values
        input_values = inputs.values
      elif tf_utils.is_ragged(inputs):
        lookup_values = lookup_result.flat_values
        input_values = inputs.flat_values
      else:
        lookup_values = lookup_result
        input_values = inputs
      oov_indices = array_ops.where_v2(math_ops.equal(lookup_values, -1))
      oov_inputs = array_ops.gather_nd(input_values, oov_indices)
      msg = string_ops.string_format(
          "When `num_oov_indices=0` all inputs should be in vocabulary, "
          "found OOV values {}, consider setting `num_oov_indices=1`.",
          (oov_inputs,))
      assertion = control_flow_ops.Assert(
          math_ops.equal(array_ops.size(oov_indices), 0), [msg])
      lookup_checks.append(assertion)

    with ops.control_dependencies(lookup_checks):
      if self.output_mode == INT:
        return array_ops.identity(lookup_result)

      multi_hot_output = (self.output_mode == MULTI_HOT)
      if self._vocab_size and not self.pad_to_max_tokens:
        out_depth = self._vocab_size
      else:
        out_depth = self.max_tokens
      if self.sparse:
        bincounts = category_encoding.sparse_bincount(lookup_result, out_depth,
                                                      multi_hot_output)
      else:
        bincounts = category_encoding.dense_bincount(lookup_result, out_depth,
                                                     multi_hot_output)

      if self.output_mode == TF_IDF:
        return math_ops.multiply(bincounts, self.tf_idf_weights)

      return bincounts
Exemplo n.º 6
0
    def _preprocess(self, inputs):
        if self._standardize == LOWER_AND_STRIP_PUNCTUATION:
            if tf_utils.is_ragged(inputs):
                lowercase_inputs = ragged_functional_ops.map_flat_values(
                    gen_string_ops.string_lower, inputs)
                # Depending on configuration, we may never touch the non-data tensor
                # in the ragged inputs tensor. If that is the case, and this is the
                # only layer in the keras model, running it will throw an error.
                # To get around this, we wrap the result in an identity.
                lowercase_inputs = array_ops.identity(lowercase_inputs)
            else:
                lowercase_inputs = gen_string_ops.string_lower(inputs)
            inputs = string_ops.regex_replace(lowercase_inputs,
                                              DEFAULT_STRIP_REGEX, "")
        elif callable(self._standardize):
            inputs = self._standardize(inputs)
        elif self._standardize is not None:
            raise ValueError(
                ("%s is not a supported standardization. "
                 "TextVectorization supports the following options "
                 "for `standardize`: None, "
                 "'lower_and_strip_punctuation', or a "
                 "Callable.") % self._standardize)

        if self._split is not None:
            # If we are splitting, we validate that the 1st axis is of dimension 1 and
            # so can be squeezed out. We do this here instead of after splitting for
            # performance reasons - it's more expensive to squeeze a ragged tensor.
            if inputs.shape.ndims > 1:
                inputs = array_ops.squeeze(inputs, axis=-1)
            if self._split == SPLIT_ON_WHITESPACE:
                # This treats multiple whitespaces as one whitespace, and strips leading
                # and trailing whitespace.
                inputs = ragged_string_ops.string_split_v2(inputs)
            elif callable(self._split):
                inputs = self._split(inputs)
            else:
                raise ValueError(
                    ("%s is not a supported splitting."
                     "TextVectorization supports the following options "
                     "for `split`: None, 'whitespace', or a Callable.") %
                    self._split)

        # Note that 'inputs' here can be either ragged or dense depending on the
        # configuration choices for this Layer. The strings.ngrams op, however, does
        # support both ragged and dense inputs.
        if self._ngrams is not None:
            inputs = ragged_string_ops.ngrams(inputs,
                                              ngram_width=self._ngrams,
                                              separator=" ")

        return inputs
Exemplo n.º 7
0
    def lookup(self, inputs):
        """Perform a table lookup."""
        # Sparse tensors don't play nicely with tensor conversion, so we handle
        # them before attempting to convert lists or arrays to tensors.
        if isinstance(
                inputs,
            (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
            return self._sparse_lookup(inputs)

        # Try to convert lists/arrays to tensors or RaggedTensors.
        inputs = ragged_tensor.convert_to_tensor_or_ragged_tensor(inputs)

        # Run the lookup operation on the converted tensor.
        if tf_utils.is_ragged(inputs):
            return self._ragged_lookup(inputs)
        else:
            return self._tensor_lookup(inputs)
Exemplo n.º 8
0
    def compute(self, values, accumulator=None):
      """Compute a step in this computation, returning a new accumulator."""

      if isinstance(values, sparse_tensor.SparseTensor):
        values = values.values
      if tf_utils.is_ragged(values):
        values = values.flat_values
      flattened_input = np.reshape(values, newshape=(-1, 1))

      summaries = [summarize(v, self.epsilon) for v in flattened_input.T]

      if accumulator is None:
        return self._create_accumulator(summaries)
      else:
        return self._create_accumulator(
            [merge_summaries(prev_summ, summ, self.epsilon)
             for prev_summ, summ in zip(accumulator.summaries, summaries)])
Exemplo n.º 9
0
 def call(self, inputs):
   if tf_utils.is_ragged(inputs):
     integer_buckets = ragged_functional_ops.map_flat_values(
         gen_math_ops.Bucketize, input=inputs, boundaries=self.bins)
     # Ragged map_flat_values doesn't touch the non-values tensors in the
     # ragged composite tensor. If this op is the only op a Keras model,
     # this can cause errors in Graph mode, so wrap the tensor in an identity.
     return array_ops.identity(integer_buckets)
   elif isinstance(inputs, sparse_tensor.SparseTensor):
     integer_buckets = gen_math_ops.Bucketize(
         input=inputs.values, boundaries=self.bins)
     return sparse_tensor.SparseTensor(
         indices=array_ops.identity(inputs.indices),
         values=integer_buckets,
         dense_shape=array_ops.identity(inputs.dense_shape))
   else:
     return gen_math_ops.Bucketize(input=inputs, boundaries=self.bins)
Exemplo n.º 10
0
    def call(self, inputs):
        if isinstance(inputs, (list, tuple, np.ndarray)):
            inputs = ops.convert_to_tensor_v2_with_dispatch(inputs)

        self._called = True
        inputs = self._preprocess(inputs)

        # If we're not doing any output processing, return right away.
        if self._output_mode is None:
            return inputs
        indexed_data = self._index_lookup_layer(inputs)
        if self._output_mode == INT:
            # Once we have the dense tensor, we can return it if we weren't given a
            # fixed output sequence length. If we were, though, we have to dynamically
            # choose whether to pad or trim it based on each tensor.

            # We need to convert to dense if we have a ragged tensor.
            if tf_utils.is_ragged(indexed_data):
                dense_data = indexed_data.to_tensor(default_value=0)
            else:
                dense_data = indexed_data

            if self._output_sequence_length is None:
                return dense_data
            else:
                sequence_len = K.shape(dense_data)[1]
                pad_amt = self._output_sequence_length - sequence_len
                pad_fn = lambda: array_ops.pad(dense_data, [[0, 0],
                                                            [0, pad_amt]])
                slice_fn = lambda: dense_data[:, :self._output_sequence_length]
                output_tensor = control_flow_ops.cond(
                    sequence_len < self._output_sequence_length,
                    true_fn=pad_fn,
                    false_fn=slice_fn)
                output_shape = output_tensor.shape.as_list()
                output_shape[-1] = self._output_sequence_length
                output_tensor.set_shape(tensor_shape.TensorShape(output_shape))
                return output_tensor

        # If we're not returning integers here, we rely on the vectorization layer
        # to create the output.
        return self._vectorize_layer(indexed_data)
Exemplo n.º 11
0
    def lookup(self, inputs):
        """Perform a table lookup."""
        # Sparse tensors don't play nicely with tensor conversion, so we handle
        # them before attempting to convert lists or arrays to tensors.
        if isinstance(
                inputs,
            (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
            return self._sparse_lookup(inputs)

        if tf_utils.is_ragged(inputs):
            if isinstance(inputs, ragged_tensor_value.RaggedTensorValue):
                flat_values = ops.convert_to_tensor_v2_with_dispatch(
                    value=inputs.flat_values, name="flat_values")
                inputs = ragged_tensor.RaggedTensor.from_nested_row_splits(
                    flat_values, inputs.nested_row_splits, validate=False)
            return self._ragged_lookup(inputs)

        # For normal tensor inputs
        inputs = ops.convert_to_tensor_v2_with_dispatch(inputs)
        return self._tensor_lookup(inputs)
Exemplo n.º 12
0
    def call(self, inputs):
        def _bucketize_op(bins):
            bins = [math_ops.cast(bins, dtypes.float32)]
            return lambda inputs: gen_boosted_trees_ops.BoostedTreesBucketize(  # pylint: disable=g-long-lambda
                float_values=[math_ops.cast(inputs, dtypes.float32)],
                bucket_boundaries=bins)[0]

        if tf_utils.is_ragged(inputs):
            integer_buckets = ragged_functional_ops.map_flat_values(
                _bucketize_op(array_ops.squeeze(self.bins)), inputs)
            # Ragged map_flat_values doesn't touch the non-values tensors in the
            # ragged composite tensor. If this op is the only op a Keras model,
            # this can cause errors in Graph mode, so wrap the tensor in an identity.
            return array_ops.identity(integer_buckets)
        elif isinstance(inputs, sparse_tensor.SparseTensor):
            integer_buckets = gen_boosted_trees_ops.BoostedTreesBucketize(
                float_values=[math_ops.cast(inputs.values, dtypes.float32)],
                bucket_boundaries=[
                    math_ops.cast(array_ops.squeeze(self.bins), dtypes.float32)
                ])[0]
            return sparse_tensor.SparseTensor(
                indices=array_ops.identity(inputs.indices),
                values=integer_buckets,
                dense_shape=array_ops.identity(inputs.dense_shape))
        else:
            input_shape = inputs.get_shape()
            if any(dim is None for dim in input_shape.as_list()[1:]):
                raise NotImplementedError(
                    "Discretization Layer requires known non-batch shape,"
                    "found {}".format(input_shape))

            reshaped = array_ops.reshape(inputs, [
                -1,
                gen_math_ops.Prod(input=input_shape.as_list()[1:], axis=0)
            ])

            return array_ops.reshape(
                control_flow_ops.vectorized_map(
                    _bucketize_op(array_ops.squeeze(self.bins)), reshaped),
                array_ops.constant([-1] + input_shape.as_list()[1:]))
Exemplo n.º 13
0
  def call(self, inputs):
    inputs = [self._preprocess_input(inp) for inp in inputs]
    depth_tuple = self._depth_tuple if self.depth else (len(inputs),)
    ragged_out = sparse_out = False
    if any(tf_utils.is_ragged(inp) for inp in inputs):
      ragged_out = True
    elif any(isinstance(inp, sparse_tensor.SparseTensor) for inp in inputs):
      sparse_out = True

    outputs = []
    for depth in depth_tuple:
      if len(inputs) < depth:
        raise ValueError(
            'Number of inputs cannot be less than depth, got {} input tensors, '
            'and depth {}'.format(len(inputs), depth))
      for partial_inps in itertools.combinations(inputs, depth):
        partial_out = self.partial_crossing(
            partial_inps, ragged_out, sparse_out)
        outputs.append(partial_out)
    if sparse_out:
      return sparse_ops.sparse_concat_v2(axis=1, sp_inputs=outputs)
    return array_ops.concat(outputs, axis=1)
Exemplo n.º 14
0
    def __call__(self,
                 y_true,
                 y_pred,
                 sample_weight=None,
                 regularization_losses=None):
        """Computes the overall loss.

    Args:
      y_true: An arbitrary structure of Tensors representing the ground truth.
      y_pred: An arbitrary structure of Tensors representing a Model's outputs.
      sample_weight: An arbitrary structure of Tensors representing the
        per-sample loss weights. If one Tensor is passed, it is used for all
        losses. If multiple Tensors are passed, the structure should match
        `y_pred`.
      regularization_losses: Additional losses to be added to the total loss.

    Returns:
      Tuple of `(total_loss, per_output_loss_list)`
    """
        y_true = self._conform_to_outputs(y_pred, y_true)
        sample_weight = self._conform_to_outputs(y_pred, sample_weight)

        if not self._built:
            self.build(y_pred)

        y_pred = nest.flatten(y_pred)
        y_true = nest.flatten(y_true)
        sample_weight = nest.flatten(sample_weight)

        loss_values = []  # Used for gradient calculation.
        loss_metric_values = []  # Used for loss metric calculation.
        batch_dim = None
        zip_args = (y_true, y_pred, sample_weight, self._losses,
                    self._loss_weights, self._per_output_metrics)
        for y_t, y_p, sw, loss_obj, loss_weight, metric_obj in zip(*zip_args):
            if y_t is None or loss_obj is None:  # Ok to have no loss for an output.
                continue

            y_t, y_p, sw = match_dtype_and_rank(y_t, y_p, sw)
            sw = apply_mask(y_p, sw, get_mask(y_p))
            loss_value = loss_obj(y_t, y_p, sample_weight=sw)

            loss_metric_value = loss_value
            # Correct for the `Mean` loss metrics counting each replica as a batch.
            if loss_obj.reduction == losses_utils.ReductionV2.SUM:
                loss_metric_value *= ds_context.get_strategy(
                ).num_replicas_in_sync

            if batch_dim is None:
                if tf_utils.is_ragged(y_t):
                    batch_dim = y_t.nrows()
                else:
                    batch_dim = array_ops.shape(y_t)[0]

            if metric_obj is not None:
                metric_obj.update_state(loss_metric_value,
                                        sample_weight=batch_dim)

            if loss_weight is not None:
                loss_value *= loss_weight
                loss_metric_value *= loss_weight

            if (loss_obj.reduction
                    == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE
                    or loss_obj.reduction == losses_utils.ReductionV2.AUTO):
                loss_value = losses_utils.scale_loss_for_distribution(
                    loss_value)

            loss_values.append(loss_value)
            loss_metric_values.append(loss_metric_value)

        if regularization_losses:
            regularization_losses = losses_utils.cast_losses_to_common_dtype(
                regularization_losses)
            reg_loss = math_ops.add_n(regularization_losses)
            loss_metric_values.append(reg_loss)
            loss_values.append(
                losses_utils.scale_loss_for_distribution(reg_loss))

        if loss_values:
            loss_metric_values = losses_utils.cast_losses_to_common_dtype(
                loss_metric_values)
            total_loss_metric_value = math_ops.add_n(loss_metric_values)
            self._loss_metric.update_state(total_loss_metric_value,
                                           sample_weight=batch_dim)

            loss_values = losses_utils.cast_losses_to_common_dtype(loss_values)
            total_loss = math_ops.add_n(loss_values)
            return total_loss
        else:
            # Ok for a model to have no compiled loss.
            return array_ops.zeros(shape=())
Exemplo n.º 15
0
def _create_keras_history_helper(tensors, processed_ops, created_layers):
    """Helper method for `create_keras_history`.

  Arguments:
    tensors: A structure of Tensors for which to create Keras metadata.
    processed_ops: Set. TensorFlow operations that have already been wrapped in
      `TensorFlowOpLayer` instances.
    created_layers: List. The `TensorFlowOpLayer` instances created.

  Returns:
    Tuple. First element is the updated set of TensorFlow Operations that
    have been wrapped in `TensorFlowOpLayer` instances. Second element is
    a list of the `TensorFlowOpLayer` instances created.
  """
    # Import of `base_layer` needed in order to create `TensorFlowOpLayer`.
    # Cannot be imported at top because of circular dependencies.
    # TODO(omalleyt): Resolve circular dependency.
    from tensorflow.python.keras.engine import base_layer  # pylint: disable=g-import-not-at-top
    tensor_list = nest.flatten(tensors)
    sparse_ops = []
    ragged_tensors = []
    for tensor in tensor_list:
        if getattr(tensor, '_keras_history', None) is not None:
            continue
        if isinstance(
                tensor,
            (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
            sparse_ops.append(tensor.op)
            continue
        if tf_utils.is_ragged(tensor):
            # Ragged tensors don't have an op property
            ragged_tensors.append(tensor)
            continue
        op = tensor.op  # The Op that created this Tensor.
        if op not in processed_ops:
            # Recursively set `_keras_history`.
            op_inputs = list(op.inputs)
            constants = {}
            layer_inputs = []
            for i, op_input in enumerate(op_inputs):
                if uses_keras_history(op_input):
                    layer_inputs.append(op_input)
                else:
                    # Treat any value not originating from a `keras.Input` as
                    # a constant. Variables cannot be supported.
                    ds_with_session = (
                        distribution_strategy_context.in_cross_replica_context(
                        ) and not ops.executing_eagerly_outside_functions())
                    using_xla = control_flow_util.GraphOrParentsInXlaContext(
                        ops.get_default_graph())
                    if ds_with_session or using_xla:
                        # In Legacy Graph mode, evaluating here makes Session be
                        # configured improperly. The downside of this is that saving
                        # via `get_config` breaks, but SavedModel still works.
                        constants[i] = op_input
                    else:
                        with ops.init_scope():
                            if ops.executing_eagerly_outside_functions():
                                constants[
                                    i] = backend.eval_in_eager_or_function(
                                        op_input)
                            else:
                                constants[i] = backend.function([],
                                                                op_input)([])
            layer_inputs = unnest_if_single_tensor(layer_inputs)
            processed_ops, created_layers = _create_keras_history_helper(
                layer_inputs, processed_ops, created_layers)
            name = op.name
            node_def = op.node_def.SerializeToString()
            op_layer = base_layer.TensorFlowOpLayer(node_def,
                                                    constants=constants,
                                                    name=name)
            created_layers.append(op_layer)
            op_layer._set_connectivity_metadata(  # pylint: disable=protected-access
                args=(layer_inputs, ),
                kwargs={},
                outputs=op.outputs)
            processed_ops.update([op])
    if sparse_ops or ragged_tensors:
        lambda_example = """
    weights_mult = lambda x: tf.sparse.sparse_dense_matmul(x, weights)
    output = tf.keras.layers.Lambda(weights_mult)(input)
    """
        raise ValueError(
            'Tensorflow ops that generate ragged or sparse tensor '
            'outputs are currently not supported by Keras automatic '
            'op wrapping. Please wrap these ops in a Lambda layer: '
            '\n\n```\n{example}\n```\n'
            'Sparse ops encountered: {sparse_ops}\n'
            'Ragged tensors encountered: {ragged_tensors}\n'.format(
                example=lambda_example,
                sparse_ops=str(sparse_ops),
                ragged_tensors=str(ragged_tensors)))
    return processed_ops, created_layers
Exemplo n.º 16
0
 def test_is_ragged_return_true_for_ragged_tensor(self):
     tensor = ragged_tensor.RaggedTensor.from_row_splits(
         values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8])
     self.assertTrue(tf_utils.is_ragged(tensor))
Exemplo n.º 17
0
 def test_is_ragged_return_false_for_list(self):
     tensor = [1., 2., 3.]
     self.assertFalse(tf_utils.is_ragged(tensor))