def _operator_and_matrix(self, build_info, dtype, use_placeholder):
    shape = build_info.shape
    # For this test class, we are creating Hermitian spectrums.
    # We also want the spectrum to have eigenvalues bounded away from zero.
    #
    # pre_spectrum is bounded away from zero.
    pre_spectrum = linear_operator_test_util.random_uniform(
        shape=self._shape_to_spectrum_shape(shape), minval=1., maxval=2.)
    pre_spectrum_c = _to_complex(pre_spectrum)

    # Real{IFFT[pre_spectrum]}
    #  = IFFT[EvenPartOf[pre_spectrum]]
    # is the IFFT of something that is also bounded away from zero.
    # Therefore, FFT[pre_h] would be a well-conditioned spectrum.
    pre_h = math_ops.ifft2d(pre_spectrum_c)

    # A spectrum is Hermitian iff it is the DFT of a real convolution kernel.
    # So we will make spectrum = FFT[h], for real valued h.
    h = math_ops.real(pre_h)
    h_c = _to_complex(h)

    spectrum = math_ops.fft2d(h_c)

    lin_op_spectrum = spectrum

    if use_placeholder:
      lin_op_spectrum = array_ops.placeholder_with_default(spectrum, shape=None)

    operator = linalg.LinearOperatorCirculant2D(
        lin_op_spectrum, input_output_dtype=dtype)

    mat = self._spectrum_to_circulant_2d(spectrum, shape, dtype=dtype)

    return operator, mat
Exemplo n.º 2
0
    def _operator_and_matrix(self, build_info, dtype, use_placeholder):
        shape = build_info.shape
        # For this test class, we are creating Hermitian spectrums.
        # We also want the spectrum to have eigenvalues bounded away from zero.
        #
        # pre_spectrum is bounded away from zero.
        pre_spectrum = linear_operator_test_util.random_uniform(
            shape=self._shape_to_spectrum_shape(shape), minval=1., maxval=2.)
        pre_spectrum_c = _to_complex(pre_spectrum)

        # Real{IFFT[pre_spectrum]}
        #  = IFFT[EvenPartOf[pre_spectrum]]
        # is the IFFT of something that is also bounded away from zero.
        # Therefore, FFT[pre_h] would be a well-conditioned spectrum.
        pre_h = math_ops.ifft2d(pre_spectrum_c)

        # A spectrum is Hermitian iff it is the DFT of a real convolution kernel.
        # So we will make spectrum = FFT[h], for real valued h.
        h = math_ops.real(pre_h)
        h_c = _to_complex(h)

        spectrum = math_ops.fft2d(h_c)

        lin_op_spectrum = spectrum

        if use_placeholder:
            lin_op_spectrum = array_ops.placeholder_with_default(spectrum,
                                                                 shape=None)

        operator = linalg.LinearOperatorCirculant2D(lin_op_spectrum,
                                                    input_output_dtype=dtype)

        mat = self._spectrum_to_circulant_2d(spectrum, shape, dtype=dtype)

        return operator, mat
    def _operator_and_mat_and_feed_dict(self, build_info, dtype,
                                        use_placeholder):
        shape = build_info.shape
        # For this test class, we are creating Hermitian spectrums.
        # We also want the spectrum to have eigenvalues bounded away from zero.
        #
        # pre_spectrum is bounded away from zero.
        pre_spectrum = linear_operator_test_util.random_uniform(
            shape=self._shape_to_spectrum_shape(shape), minval=1., maxval=2.)
        pre_spectrum_c = _to_complex(pre_spectrum)

        # Real{IFFT[pre_spectrum]}
        #  = IFFT[EvenPartOf[pre_spectrum]]
        # is the IFFT of something that is also bounded away from zero.
        # Therefore, FFT[pre_h] would be a well-conditioned spectrum.
        pre_h = math_ops.ifft2d(pre_spectrum_c)

        # A spectrum is Hermitian iff it is the DFT of a real convolution kernel.
        # So we will make spectrum = FFT[h], for real valued h.
        h = math_ops.real(pre_h)
        h_c = _to_complex(h)

        spectrum = math_ops.fft2d(h_c)

        if use_placeholder:
            spectrum_ph = array_ops.placeholder(dtypes.complex64)
            # Evaluate here because (i) you cannot feed a tensor, and (ii)
            # it is random and we want the same value used for both mat and feed_dict.
            spectrum = spectrum.eval()
            operator = linalg.LinearOperatorCirculant2D(
                spectrum_ph, input_output_dtype=dtype)
            feed_dict = {spectrum_ph: spectrum}
        else:
            operator = linalg.LinearOperatorCirculant2D(
                spectrum, input_output_dtype=dtype)
            feed_dict = None

        mat = self._spectrum_to_circulant_2d(spectrum, shape, dtype=dtype)

        return operator, mat, feed_dict
  def _operator_and_mat_and_feed_dict(self, build_info, dtype, use_placeholder):
    shape = build_info.shape
    # For this test class, we are creating Hermitian spectrums.
    # We also want the spectrum to have eigenvalues bounded away from zero.
    #
    # pre_spectrum is bounded away from zero.
    pre_spectrum = linear_operator_test_util.random_uniform(
        shape=self._shape_to_spectrum_shape(shape), minval=1., maxval=2.)
    pre_spectrum_c = _to_complex(pre_spectrum)

    # Real{IFFT[pre_spectrum]}
    #  = IFFT[EvenPartOf[pre_spectrum]]
    # is the IFFT of something that is also bounded away from zero.
    # Therefore, FFT[pre_h] would be a well-conditioned spectrum.
    pre_h = math_ops.ifft2d(pre_spectrum_c)

    # A spectrum is Hermitian iff it is the DFT of a real convolution kernel.
    # So we will make spectrum = FFT[h], for real valued h.
    h = math_ops.real(pre_h)
    h_c = _to_complex(h)

    spectrum = math_ops.fft2d(h_c)

    if use_placeholder:
      spectrum_ph = array_ops.placeholder(dtypes.complex64)
      # Evaluate here because (i) you cannot feed a tensor, and (ii)
      # it is random and we want the same value used for both mat and feed_dict.
      spectrum = spectrum.eval()
      operator = linalg.LinearOperatorCirculant2D(
          spectrum_ph, input_output_dtype=dtype)
      feed_dict = {spectrum_ph: spectrum}
    else:
      operator = linalg.LinearOperatorCirculant2D(
          spectrum, input_output_dtype=dtype)
      feed_dict = None

    mat = self._spectrum_to_circulant_2d(spectrum, shape, dtype=dtype)

    return operator, mat, feed_dict
Exemplo n.º 5
0
    def _spectrum_to_circulant_2d(self, spectrum, shape, dtype):
        """Creates a block circulant matrix from a spectrum.

    Intentionally done in an explicit yet inefficient way.  This provides a
    cross check to the main code that uses fancy reshapes.

    Args:
      spectrum: Float or complex `Tensor`.
      shape:  Python list.  Desired shape of returned matrix.
      dtype:  Type to cast the returned matrix to.

    Returns:
      Block circulant (batch) matrix of desired `dtype`.
    """
        spectrum = _to_complex(spectrum)
        spectrum_shape = self._shape_to_spectrum_shape(shape)
        domain_dimension = spectrum_shape[-1]
        if not domain_dimension:
            return array_ops.zeros(shape, dtype)

        block_shape = spectrum_shape[-2:]

        # Explicitly compute the action of spectrum on basis vectors.
        matrix_rows = []
        for n0 in range(block_shape[0]):
            for n1 in range(block_shape[1]):
                x = np.zeros(block_shape)
                # x is a basis vector.
                x[n0, n1] = 1.0
                fft_x = math_ops.fft2d(x.astype(np.complex64))
                h_convolve_x = math_ops.ifft2d(spectrum * fft_x)
                # We want the flat version of the action of the operator on a basis
                # vector, not the block version.
                h_convolve_x = array_ops.reshape(h_convolve_x, shape[:-1])
                matrix_rows.append(h_convolve_x)
        matrix = array_ops.stack(matrix_rows, axis=-1)
        return math_ops.cast(matrix, dtype)
  def _spectrum_to_circulant_2d(self, spectrum, shape, dtype):
    """Creates a block circulant matrix from a spectrum.

    Intentionally done in an explicit yet inefficient way.  This provides a
    cross check to the main code that uses fancy reshapes.

    Args:
      spectrum: Float or complex `Tensor`.
      shape:  Python list.  Desired shape of returned matrix.
      dtype:  Type to cast the returned matrix to.

    Returns:
      Block circulant (batch) matrix of desired `dtype`.
    """
    spectrum = _to_complex(spectrum)
    spectrum_shape = self._shape_to_spectrum_shape(shape)
    domain_dimension = spectrum_shape[-1]
    if not domain_dimension:
      return array_ops.zeros(shape, dtype)

    block_shape = spectrum_shape[-2:]

    # Explicitly compute the action of spectrum on basis vectors.
    matrix_rows = []
    for n0 in range(block_shape[0]):
      for n1 in range(block_shape[1]):
        x = np.zeros(block_shape)
        # x is a basis vector.
        x[n0, n1] = 1.0
        fft_x = math_ops.fft2d(x.astype(np.complex64))
        h_convolve_x = math_ops.ifft2d(spectrum * fft_x)
        # We want the flat version of the action of the operator on a basis
        # vector, not the block version.
        h_convolve_x = array_ops.reshape(h_convolve_x, shape[:-1])
        matrix_rows.append(h_convolve_x)
    matrix = array_ops.stack(matrix_rows, axis=-1)
    return math_ops.cast(matrix, dtype)
Exemplo n.º 7
0
def _FFT2DGrad(_, grad):
    size = math_ops.cast(array_ops.size(grad), dtypes.float32)
    return math_ops.ifft2d(grad) * math_ops.complex(size, 0.)
Exemplo n.º 8
0
def _FFT2DGrad(_, grad):
  size = math_ops.cast(_FFTSizeForGrad(grad, 2), dtypes.float32)
  return math_ops.ifft2d(grad) * math_ops.complex(size, 0.)
Exemplo n.º 9
0
def _FFT2DGrad(_, grad):
  size = math_ops.cast(array_ops.size(grad), dtypes.float32)
  return math_ops.ifft2d(grad) * math_ops.complex(size, 0.)
Exemplo n.º 10
0
def _FFT2DGrad(_, grad):
    size = math_ops.cast(_FFTSizeForGrad(grad, 2), dtypes.float32)
    return math_ops.ifft2d(grad) * math_ops.complex(size, 0.)