Exemplo n.º 1
0
    def _get_dense_tensor_internal(self, transformation_cache, state_manager):
        """Private method that follows _get_dense_tensor_internal."""
        if (tpu.under_tpu_inference_context() and self._embedding_lookup_device
                == EmbeddingDevice.TPU_EMBEDDING_CORE):
            raise ValueError(
                'Using embedding_lookup_device=tpu_embedding_core '
                'during inference is not supported.')
        if self._embedding_lookup_device == EmbeddingDevice.CPU:
            if tpu.under_tpu_inference_context():
                return super(_TPUSharedDeviceSpecificEmbeddingColumnV2,
                             self)._get_dense_tensor_internal(
                                 transformation_cache, state_manager)
            else:
                raise ValueError(
                    'Using TPUSharedEmbeddingColumn with '
                    'embedding_lookup_device="cpu" during training is not supported.'
                )
        sparse_tensor = transformation_cache.get(self.categorical_column.name,
                                                 state_manager)

        # Use outside compile to densify and pad the input tensors.
        def host_computation():
            return pad_sparse_embedding_lookup_indices(
                sparse_tensor, self._tensor_core_shape[1])

        values, mask = tpu.outside_compilation(host_computation)

        # Do a dense embedding lookup on TensorCore.
        embedding_weights = self.shared_embedding_column_creator.embedding_weights
        embedding = sparse_embedding_aggregate_slice(embedding_weights,
                                                     (values, mask),
                                                     self.get_combiner())
        return embedding
def _check_invalid_cases(embedding_lookup_device):
    """Checks for invalid embedding_lookup_device configurations."""
    if (tpu.under_tpu_inference_context()
            and embedding_lookup_device == EmbeddingDevice.TPU_EMBEDDING_CORE):
        raise ValueError(
            'Using embedding_lookup_device=tpu_embedding_core during inference '
            'is not supported.')
    if embedding_lookup_device == EmbeddingDevice.CPU:
        if not tpu.under_tpu_inference_context():
            raise ValueError(
                'Using TPUEmbeddingColumn with embedding_lookup_device="cpu" '
                'during training is not supported.')
Exemplo n.º 3
0
    def get_dense_tensor(self, transformation_cache, state_manager):
        """Private method that follows get_dense_tensor."""

        # If we aren't inferencing on TensorCore, just delegate to parent.
        if not tpu.under_tpu_inference_context(
        ) or not self._tensor_core_shape:
            return super(_TPUDeviceSpecificEmbeddingColumnV2,
                         self).get_dense_tensor(transformation_cache,
                                                state_manager)
        sparse_tensor = transformation_cache.get(self.categorical_column.name,
                                                 state_manager)

        # Use outside compile to densify and pad the input tensors.
        def host_computation():
            return pad_sparse_embedding_lookup_indices(
                sparse_tensor, self._tensor_core_shape[1])

        values, mask = tpu.outside_compilation(host_computation)

        # Do a dense embedding lookup on TensorCore.
        embedding_weights = state_manager.get_variable(self,
                                                       'embedding_weights')
        embedding = sparse_embedding_aggregate_slice(embedding_weights,
                                                     (values, mask),
                                                     self.get_combiner())
        return embedding
Exemplo n.º 4
0
    def create_state(self, state_manager):
        if (tpu.under_tpu_inference_context() and self._embedding_lookup_device
                == EmbeddingDevice.TPU_EMBEDDING_CORE):
            raise ValueError(
                'Using embedding_lookup_device=tpu_embedding_core during inference '
                'is not supported.')
        if self._embedding_lookup_device == EmbeddingDevice.CPU:
            if tpu.under_tpu_inference_context():
                return fc_lib.EmbeddingColumn.create_state(self, state_manager)
            else:
                raise ValueError(
                    'Using TPUEmbeddingColumn with embedding_lookup_device="cpu" '
                    'during training is not supported.')

        return super(_TPUDeviceSpecificEmbeddingColumnV2,
                     self).create_state(state_manager)
Exemplo n.º 5
0
  def _get_sequence_dense_tensor(
      self, inputs, weight_collections=None, trainable=None):
    if tpu.under_tpu_inference_context():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('Export saved model does not support MOD '
                                  'sharded embeddings.')
      def host_computation():
        return fc._SharedEmbeddingColumn._get_sequence_dense_tensor(
            self, inputs, weight_collections, trainable)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('TPUEmbedding on CPU does not support MOD '
                                  'sharded embeddings.')
      return fc._SharedEmbeddingColumn._get_sequence_dense_tensor(
          self, inputs, weight_collections, trainable)

    tensor = inputs.get(self.get_feature_key_name())
    tensor_lengths = inputs.get(self.get_sequence_length_feature_key_name())

    # Add to collection for _create_tpu_embedding_variables_and_ops
    _record_variable_scope_and_name(
        self.get_embedding_var_name(),
        'embedding_weights',
        is_shared_embedding=True)

    return fc._SequenceDenseColumn.TensorSequenceLengthPair(
        dense_tensor=tensor, sequence_length=tensor_lengths)
Exemplo n.º 6
0
  def get_sequence_dense_tensor(
      self, transformation_cache, state_manager):
    if tpu.under_tpu_inference_context():
      def host_computation():
        return fc_lib.SharedEmbeddingColumn.get_sequence_dense_tensor(
            self, transformation_cache, state_manager)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      return fc_lib.SharedEmbeddingColumn.get_sequence_dense_tensor(
          self, transformation_cache, state_manager)

    tensor = fc_lib.SharedEmbeddingColumn._dense_tensor_internal(
        self, transformation_cache, state_manager)
    tensor_lengths = transformation_cache.get(
        self.get_sequence_length_feature_key_name(),
        state_manager)

    # FeatureTransformationCache expands rank 1 tensors (like sequence length)
    # to rank 2. We need to undo this to match the standard CPU sequence
    # embedding.
    tensor_lengths = array_ops.squeeze(tensor_lengths, -1)

    return fc_lib.SequenceDenseColumn.TensorSequenceLengthPair(
        dense_tensor=tensor, sequence_length=tensor_lengths)
Exemplo n.º 7
0
  def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    if tpu.under_tpu_inference_context():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('Export saved model does not support MOD '
                                  'sharded embeddings.')
      def host_computation():
        return fc._EmbeddingColumn._get_dense_tensor(
            self, inputs, weight_collections, trainable)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('TPUEmbedding on CPU does not support MOD '
                                  'sharded embeddings.')
      return fc._EmbeddingColumn._get_dense_tensor(
          self, inputs, weight_collections, trainable)

    # TPU mode
    # Get the embeddings from the LazyBuilder.
    tensor = inputs.get(self.get_feature_key_name())

    # Add to collection for _create_tpu_embedding_variables_and_ops
    _record_variable_scope_and_name(self.get_embedding_var_name(),
                                    'embedding_weights')

    return tensor
Exemplo n.º 8
0
    def _get_dense_tensor(self,
                          inputs,
                          weight_collections=None,
                          trainable=None):
        if tpu.under_tpu_inference_context():

            def host_computation():
                return fc._SharedEmbeddingColumn._get_dense_tensor(
                    self, inputs, weight_collections, trainable)

            return tpu.outside_compilation(host_computation)

        if _is_running_on_cpu():
            return fc._SharedEmbeddingColumn._get_dense_tensor(
                self, inputs, weight_collections, trainable)

        # TPU mode
        # Get the embeddings from the LazyBuilder.
        tensor = inputs.get(self.get_feature_key_name())

        # Add to collection for _create_tpu_embedding_variables_and_ops
        _record_variable_scope_and_name(self.get_embedding_var_name(),
                                        'embedding_weights',
                                        is_shared_embedding=True)
        return tensor
Exemplo n.º 9
0
  def _get_sequence_dense_tensor(
      self, inputs, weight_collections=None, trainable=None):
    if tpu.under_tpu_inference_context():
      def host_computation():
        return fc_lib.EmbeddingColumn._get_sequence_dense_tensor(
            self, inputs, weight_collections, trainable)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      return fc_lib.EmbeddingColumn._get_sequence_dense_tensor(
          self, inputs, weight_collections, trainable)

    tensor = inputs.get(self.get_feature_key_name())
    tensor_lengths = inputs.get(self.get_sequence_length_feature_key_name())

    # inputs is a _LazyBuilder and for rank 1 tensors, it calls expand_dims(-1).
    # We need to undo this to match the standard CPU sequence embedding.
    tensor_lengths = array_ops.squeeze(tensor_lengths, -1)

    # Add to collection for _create_tpu_embedding_variables_and_ops
    _record_variable_scope_and_name(self.get_embedding_var_name(),
                                    'embedding_weights')

    return fc_lib.SequenceDenseColumn.TensorSequenceLengthPair(
        dense_tensor=tensor, sequence_length=tensor_lengths)
Exemplo n.º 10
0
    def _get_sequence_dense_tensor(self,
                                   inputs,
                                   weight_collections=None,
                                   trainable=None):
        if tpu.under_tpu_inference_context():

            def host_computation():
                return fc._SharedEmbeddingColumn._get_sequence_dense_tensor(
                    self, inputs, weight_collections, trainable)

            return tpu.outside_compilation(host_computation)

        if _is_running_on_cpu():
            return fc._SharedEmbeddingColumn._get_sequence_dense_tensor(
                self, inputs, weight_collections, trainable)

        tensor = inputs.get(self.get_feature_key_name())
        tensor_lengths = inputs.get(
            self.get_sequence_length_feature_key_name())

        # Add to collection for _create_tpu_embedding_variables_and_ops
        _record_variable_scope_and_name(self.get_embedding_var_name(),
                                        'embedding_weights',
                                        is_shared_embedding=True)

        return fc._SequenceDenseColumn.TensorSequenceLengthPair(
            dense_tensor=tensor, sequence_length=tensor_lengths)
Exemplo n.º 11
0
  def _get_sequence_dense_tensor(
      self, inputs, weight_collections=None, trainable=None):
    if tpu.under_tpu_inference_context():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('Export saved model does not support MOD '
                                  'sharded embeddings.')
      def host_computation():
        return fc._EmbeddingColumn._get_sequence_dense_tensor(
            self, inputs, weight_collections, trainable)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('TPUEmbedding on CPU does not support MOD '
                                  'sharded embeddings.')
      return fc._EmbeddingColumn._get_sequence_dense_tensor(
          self, inputs, weight_collections, trainable)

    tensor = inputs.get(self.get_feature_key_name())
    tensor_lengths = inputs.get(self.get_sequence_length_feature_key_name())

    # inputs is a _LazyBuilder and for rank 1 tensors, it calls expand_dims(-1).
    # We need to undo this to match the standard CPU sequence embedding.
    tensor_lengths = array_ops.squeeze(tensor_lengths, -1)

    # Add to collection for _create_tpu_embedding_variables_and_ops
    _record_variable_scope_and_name(self.get_embedding_var_name(),
                                    'embedding_weights')

    return fc._SequenceDenseColumn.TensorSequenceLengthPair(
        dense_tensor=tensor, sequence_length=tensor_lengths)
Exemplo n.º 12
0
  def _get_sequence_dense_tensor(
      self, inputs, weight_collections=None, trainable=None):
    if tpu.under_tpu_inference_context():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('Export saved model does not support MOD '
                                  'sharded embeddings.')
      def host_computation():
        return fc._SharedEmbeddingColumn._get_sequence_dense_tensor(
            self, inputs, weight_collections, trainable)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('TPUEmbedding on CPU does not support MOD '
                                  'sharded embeddings.')
      return fc._SharedEmbeddingColumn._get_sequence_dense_tensor(
          self, inputs, weight_collections, trainable)

    tensor = inputs.get(self.get_feature_key_name())
    tensor_lengths = inputs.get(self.get_sequence_length_feature_key_name())

    # Add to collection for _create_tpu_embedding_variables_and_ops
    _record_variable_scope_and_name(
        self.get_embedding_var_name(),
        'embedding_weights',
        is_shared_embedding=True)

    return fc._SequenceDenseColumn.TensorSequenceLengthPair(
        dense_tensor=tensor, sequence_length=tensor_lengths)
Exemplo n.º 13
0
  def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    if tpu.under_tpu_inference_context():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('Export saved model does not support MOD '
                                  'sharded embeddings.')
      def host_computation():
        return fc._EmbeddingColumn._get_dense_tensor(
            self, inputs, weight_collections, trainable)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('TPUEmbedding on CPU does not support MOD '
                                  'sharded embeddings.')
      return fc._EmbeddingColumn._get_dense_tensor(
          self, inputs, weight_collections, trainable)

    # TPU mode
    # Get the embeddings from the LazyBuilder.
    tensor = inputs.get(self.get_feature_key_name())

    # Add to collection for _create_tpu_embedding_variables_and_ops
    _record_variable_scope_and_name(self.get_embedding_var_name(),
                                    'embedding_weights')

    return tensor
Exemplo n.º 14
0
    def _get_dense_tensor_internal(self, transformation_cache, state_manager):
        if tpu.under_tpu_inference_context():

            def host_computation():
                return fc_lib.SharedEmbeddingColumn._get_dense_tensor_internal(
                    self, transformation_cache, state_manager)

            return tpu.outside_compilation(host_computation)

        if _is_running_on_cpu():
            return fc_lib.SharedEmbeddingColumn._get_dense_tensor_internal(
                self, transformation_cache, state_manager)

        # TPU mode
        # Get the embeddings from the FeatureTransformationCache.
        tensor = transformation_cache.get(self.get_feature_key_name(),
                                          state_manager)

        # Add to collection for _create_tpu_embedding_variables_and_ops
        # Note that in Feature Column V2, shared embeddings have no scope.
        _record_variable_scope_and_name(
            self.get_embedding_var_name(),
            self.shared_embedding_column_creator._name,
            is_shared_embedding=True)
        return tensor
Exemplo n.º 15
0
  def _get_sequence_dense_tensor(
      self, inputs, weight_collections=None, trainable=None):
    if tpu.under_tpu_inference_context():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('Export saved model does not support MOD '
                                  'sharded embeddings.')
      def host_computation():
        return fc._EmbeddingColumn._get_sequence_dense_tensor(
            self, inputs, weight_collections, trainable)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      if self._partition_strategy == 'mod':
        raise NotImplementedError('TPUEmbedding on CPU does not support MOD '
                                  'sharded embeddings.')
      return fc._EmbeddingColumn._get_sequence_dense_tensor(
          self, inputs, weight_collections, trainable)

    tensor = inputs.get(self.get_feature_key_name())
    tensor_lengths = inputs.get(self.get_sequence_length_feature_key_name())

    # inputs is a _LazyBuilder and for rank 1 tensors, it calls expand_dims(-1).
    # We need to undo this to match the standard CPU sequence embedding.
    tensor_lengths = array_ops.squeeze(tensor_lengths, -1)

    # Add to collection for _create_tpu_embedding_variables_and_ops
    _record_variable_scope_and_name(self.get_embedding_var_name(),
                                    'embedding_weights')

    return fc._SequenceDenseColumn.TensorSequenceLengthPair(
        dense_tensor=tensor, sequence_length=tensor_lengths)
    def _get_dense_tensor(self,
                          inputs,
                          weight_collections=None,
                          trainable=None):
        _check_invalid_cases(self._embedding_lookup_device)
        # CPU Case.
        is_cpu = self._embedding_lookup_device == EmbeddingDevice.CPU
        is_cpu = is_cpu or _is_running_on_cpu()
        if is_cpu:
            return super(_TPUDeviceSpecificEmbeddingColumnV2,
                         self)._get_dense_tensor(inputs, weight_collections,
                                                 trainable)
        # TPU_EMBEDDING_CORE case.
        elif self._embedding_lookup_device == EmbeddingDevice.TPU_EMBEDDING_CORE:
            return super(_TPUDeviceSpecificEmbeddingColumnV2,
                         self)._get_dense_tensor(inputs, weight_collections,
                                                 trainable)

        # TPU_EMBEDDING_CORE cases.
        if tpu.under_tpu_inference_context():
            # For inference, use outside compile to densify and pad the input tensors.
            sparse_tensor = inputs.get(self.get_feature_key_name())

            def host_computation():
                return pad_sparse_embedding_lookup_indices(
                    sparse_tensor, self._tensor_core_shape[1])

            values, mask = tpu.outside_compilation(host_computation)
        else:
            # For training, the inputs should already have been densified and padded.
            values = inputs.get(self.get_feature_key_name())
            mask = inputs.get(self.get_feature_key_name() +
                              _TENSOR_CORE_MASK_KEY_SUFFIX)

        embedding_shape = (self.categorical_column._num_buckets, self.dimension
                           )  # pylint: disable=protected-access
        if (weight_collections
                and ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections):
            weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES)
        embedding_weights = variable_scope.get_variable(
            name='embedding_weights',
            shape=embedding_shape,
            dtype=dtypes.float32,
            initializer=self.initializer,
            trainable=self.trainable and trainable,
            collections=weight_collections)
        return sparse_embedding_aggregate_slice(embedding_weights,
                                                (values, mask),
                                                self.get_combiner())
Exemplo n.º 17
0
  def get_dense_tensor(self, transformation_cache, state_manager):
    if tpu.under_tpu_inference_context():
      def host_computation():
        return fc_lib.EmbeddingColumn.get_dense_tensor(
            self, transformation_cache, state_manager)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      return fc_lib.EmbeddingColumn.get_dense_tensor(
          self, transformation_cache, state_manager)

    # TPU mode
    # Get the embeddings from the FeatureTransformationCache.
    tensor = transformation_cache.get(self.get_feature_key_name(),
                                      state_manager)

    return tensor
Exemplo n.º 18
0
  def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    if tpu.under_tpu_inference_context():
      def host_computation():
        return fc._EmbeddingColumn._get_dense_tensor(
            self, inputs, weight_collections, trainable)
      return tpu.outside_compilation(host_computation)

    if _is_running_on_cpu():
      return fc._EmbeddingColumn._get_dense_tensor(
          self, inputs, weight_collections, trainable)

    # TPU mode
    # Get the embeddings from the LazyBuilder.
    tensor = inputs.get(self.get_feature_key_name())

    # Add to collection for _create_tpu_embedding_variables_and_ops
    _record_variable_scope_and_name(self.get_embedding_var_name(),
                                    'embedding_weights')

    return tensor
    def _get_dense_tensor_internal(self, transformation_cache, state_manager):
        """Private method that follows _get_dense_tensor_internal."""
        _check_invalid_cases(self._embedding_lookup_device)
        # CPU Case.
        is_cpu = self._embedding_lookup_device == EmbeddingDevice.CPU
        is_cpu = is_cpu or _is_running_on_cpu()
        if is_cpu:
            return super(_TPUSharedDeviceSpecificEmbeddingColumnV2,
                         self)._get_dense_tensor_internal(
                             transformation_cache, state_manager)
        # TPU_EMBEDDING_CORE case.
        if self._embedding_lookup_device == EmbeddingDevice.TPU_EMBEDDING_CORE:
            return super(_TPUSharedDeviceSpecificEmbeddingColumnV2,
                         self)._get_dense_tensor_internal(
                             transformation_cache, state_manager)

        # TPU_EMBEDDING_CORE cases.
        if tpu.under_tpu_inference_context():
            # For inference, use outside compile to densify and pad the input tensors.
            sparse_tensor = transformation_cache.get(
                self.categorical_column.name, state_manager)

            def host_computation():
                return pad_sparse_embedding_lookup_indices(
                    sparse_tensor, self._tensor_core_shape[1])

            values, mask = tpu.outside_compilation(host_computation)
        else:
            # For training, the inputs should already have been densified and padded.
            values = transformation_cache.get(self.categorical_column.name,
                                              state_manager)
            mask = transformation_cache.get(
                self.categorical_column.name + _TENSOR_CORE_MASK_KEY_SUFFIX,
                state_manager)

        # Do a dense embedding lookup on TensorCore.
        embedding_weights = self.shared_embedding_column_creator.embedding_weights
        return sparse_embedding_aggregate_slice(embedding_weights,
                                                (values, mask),
                                                self.get_combiner())