def testStaircase(self):
    initial_lr = 0.1
    k = 10
    decay_rate = 0.96
    step = resource_variable_ops.ResourceVariable(0)
    decayed_lr = learning_rate_decay_v2.inverse_time_decay(
        initial_lr, step, k, decay_rate, staircase=True)

    self.evaluate(variables.global_variables_initializer())
    for i in range(k + 1):
      expected = initial_lr / (1 + decay_rate * (i // k))
      self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
      self.evaluate(step.assign_add(1))
  def testStaircase(self):
    initial_lr = 0.1
    k = 10
    decay_rate = 0.96
    step = resource_variable_ops.ResourceVariable(0)
    decayed_lr = learning_rate_decay_v2.inverse_time_decay(
        initial_lr, step, k, decay_rate, staircase=True)

    self.evaluate(variables.global_variables_initializer())
    for i in range(k + 1):
      expected = initial_lr / (1 + decay_rate * (i // k))
      self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
      self.evaluate(step.assign_add(1))
def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False,
                       name=None):
    """Applies inverse time decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an inverse decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * global_step /
  decay_step)
  ```

  or, if `staircase` is `True`, as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step /
  decay_step))
  ```

  Example: decay 1/t with a rate of 0.5:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  decay_steps = 1.0
  decay_rate = 0.5
  learning_rate = tf.train.inverse_time_decay(learning_rate, global_step,
  decay_steps, decay_rate)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: How often to apply decay.
    decay_rate: A Python number.  The decay rate.
    staircase: Whether to apply decay in a discrete staircase, as opposed to
      continuous, fashion.
    name: String.  Optional name of the operation.  Defaults to
      'InverseTimeDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
    decayed_lr = learning_rate_decay_v2.inverse_time_decay(learning_rate,
                                                           global_step,
                                                           decay_steps,
                                                           decay_rate,
                                                           staircase=staircase,
                                                           name=name)

    if not context.executing_eagerly():
        decayed_lr = decayed_lr()

    return decayed_lr
Exemplo n.º 4
0
def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False,
                       name=None):
  """Applies inverse time decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an inverse decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * global_step /
  decay_step)
  ```

  or, if `staircase` is `True`, as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step /
  decay_step))
  ```

  Example: decay 1/t with a rate of 0.5:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  decay_steps = 1.0
  decay_rate = 0.5
  learning_rate = tf.train.inverse_time_decay(learning_rate, global_step,
  decay_steps, decay_rate)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: How often to apply decay.
    decay_rate: A Python number.  The decay rate.
    staircase: Whether to apply decay in a discrete staircase, as opposed to
      continuous, fashion.
    name: String.  Optional name of the operation.  Defaults to
      'InverseTimeDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  decayed_lr = learning_rate_decay_v2.inverse_time_decay(
      learning_rate,
      global_step,
      decay_steps,
      decay_rate,
      staircase=staircase,
      name=name)

  if not context.executing_eagerly():
    decayed_lr = decayed_lr()

  return decayed_lr