Exemplo n.º 1
0
def test_mat_mul(m, n, k, a, b):
    """Tests a MatMul replacement."""
    a_constant_name = "a_constant"
    b_constant_name = "b_constant"
    mat_mul_name = "mat_mul"

    float_graph_def = tf.GraphDef()
    a_constant = quantize_graph.create_constant_node(a_constant_name,
                                                     value=a,
                                                     dtype=tf.float32,
                                                     shape=[m, k])
    float_graph_def.node.extend([a_constant])
    b_constant = quantize_graph.create_constant_node(b_constant_name,
                                                     value=b,
                                                     dtype=tf.float32,
                                                     shape=[k, n])
    float_graph_def.node.extend([b_constant])
    mat_mul_node = quantize_graph.create_node(
        "MatMul", mat_mul_name, [a_constant_name, b_constant_name])
    quantize_graph.set_attr_dtype(mat_mul_node, "T", tf.float32)
    quantize_graph.set_attr_bool(mat_mul_node, "transpose_a", False)
    quantize_graph.set_attr_bool(mat_mul_node, "transpose_b", False)
    float_graph_def.node.extend([mat_mul_node])

    test_graph(float_graph_def, {}, [mat_mul_name])
 def test_batch_norm(self):
     input_constant_name = "input_constant"
     mean_constant_name = "mean_constant"
     variance_constant_name = "variance_constant"
     beta_constant_name = "beta_constant"
     gamma_constant_name = "gamma_constant"
     batch_norm_name = "batch_norm"
     float_graph_def = graph_pb2.GraphDef()
     input_constant = quantize_graph.create_constant_node(
         input_constant_name,
         value=[1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6],
         dtype=dtypes.float32,
         shape=[1, 1, 6, 2])
     float_graph_def.node.extend([input_constant])
     mean_constant = quantize_graph.create_constant_node(
         mean_constant_name,
         value=[10, 20],
         dtype=dtypes.float32,
         shape=[2])
     float_graph_def.node.extend([mean_constant])
     variance_constant = quantize_graph.create_constant_node(
         variance_constant_name,
         value=[0.25, 0.5],
         dtype=dtypes.float32,
         shape=[2])
     float_graph_def.node.extend([variance_constant])
     beta_constant = quantize_graph.create_constant_node(
         beta_constant_name,
         value=[0.1, 0.6],
         dtype=dtypes.float32,
         shape=[2])
     float_graph_def.node.extend([beta_constant])
     gamma_constant = quantize_graph.create_constant_node(
         gamma_constant_name, value=[0, 0], dtype=dtypes.float32, shape=[2])
     float_graph_def.node.extend([gamma_constant])
     batch_norm_node = quantize_graph.create_node(
         "BatchNormWithGlobalNormalization", batch_norm_name, [
             input_constant_name, mean_constant_name,
             variance_constant_name, beta_constant_name, gamma_constant_name
         ])
     quantize_graph.set_attr_dtype(batch_norm_node, "T", dtypes.float32)
     quantize_graph.set_attr_bool(batch_norm_node,
                                  "scale_after_normalization", False)
     quantize_graph.set_attr_float(batch_norm_node, "variance_epsilon",
                                   0.001)
     float_graph_def.node.extend([batch_norm_node])
     test_graph(float_graph_def, {}, [batch_norm_name])
Exemplo n.º 3
0
 def make_matmul(name, a, b):
   n = quantize_graph.create_node("MatMul", name, [a.name, b.name])
   quantize_graph.set_attr_dtype(n, "T", dtypes.float32)
   quantize_graph.set_attr_bool(n, "transpose_a", False)
   quantize_graph.set_attr_bool(n, "transpose_b", False)
   return n