Exemplo n.º 1
0
  def test_quantized_input_range_mat_mul(self):
    shapes = [[3, 2], [2, 4]]
    inputs = []
    for i, shape in enumerate(shapes):
      node = quantize_graph.create_node("PlaceholderV2", "input_%s" % i, [])
      quantize_graph.set_attr_dtype(node, "dtype", dtypes.float32)
      quantize_graph.set_attr_shape(node, "shape", shape)
      inputs.append(node)
    mat_mul_node = quantize_graph.create_node("MatMul", "mat_mul",
                                              [n.name for n in inputs])
    quantize_graph.set_attr_dtype(mat_mul_node, "T", dtypes.float32)

    float_graph_def = graph_pb2.GraphDef()
    float_graph_def.node.extend(inputs + [mat_mul_node])

    input_map = {
        inputs[0].name + ":0":
            np.reshape([1, 2, 3, 4, 5, 6], shapes[0]),
        inputs[1].name + ":0":
            np.reshape([.8, .7, .6, .5, .4, .3, .2, .1], shapes[1])
    }
    self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
                                         [mat_mul_node.name], [-1, 20.])
    self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
                                         [mat_mul_node.name], [0, 6.])
    def test_quantized_input_range_bias_add(self):
        input_shape = [1, 1, 2, 6]
        input_n = quantize_graph.create_node("Placeholder", "input", [])
        quantize_graph.set_attr_dtype(input_n, "dtype", dtypes.float32)
        quantize_graph.set_attr_shape(input_n, "shape", input_shape)
        offset_n = quantize_graph.create_constant_node(
            "offset",
            value=[1, 2, 3, 4, 5, 6],
            dtype=dtypes.float32,
            shape=[6])
        bias_add_n = quantize_graph.create_node("BiasAdd", "bias_add",
                                                [input_n.name, offset_n.name])
        quantize_graph.set_attr_dtype(bias_add_n, "T", dtypes.float32)

        float_graph_def = graph_pb2.GraphDef()
        float_graph_def.node.extend([input_n, offset_n, bias_add_n])

        input_map = {
            input_n.name + ":0":
            np.reshape([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], input_shape)
        }
        self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
                                             [bias_add_n.name], [-1, 20.])
        self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
                                             [bias_add_n.name], [0, 12.])
  def test_quantized_input_range_bias_add(self):
    input_shape = [1, 1, 2, 6]
    input_n = quantize_graph.create_node("PlaceholderV2", "input", [])
    quantize_graph.set_attr_dtype(input_n, "dtype", dtypes.float32)
    quantize_graph.set_attr_shape(input_n, "shape", input_shape)
    offset_n = quantize_graph.create_constant_node(
        "offset", value=[1, 2, 3, 4, 5, 6], dtype=dtypes.float32, shape=[6])
    bias_add_n = quantize_graph.create_node("BiasAdd", "bias_add",
                                            [input_n.name, offset_n.name])
    quantize_graph.set_attr_dtype(bias_add_n, "T", dtypes.float32)

    float_graph_def = graph_pb2.GraphDef()
    float_graph_def.node.extend([input_n, offset_n, bias_add_n])

    input_map = {
        input_n.name + ":0":
            np.reshape([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], input_shape)
    }
    self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
                                         [bias_add_n.name], [-1, 20.])
    self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
                                         [bias_add_n.name], [0, 12.])