Exemplo n.º 1
0
  def testVonMisesSampleMoments(self):
    locs_v = np.array([-2., -1., 0.3, 2.3])
    concentrations_v = np.array([0.1, 1.0, 2.0, 10.0])
    von_mises = tfd.VonMises(
        self.make_tensor(locs_v), self.make_tensor(concentrations_v))

    n = 10000
    samples = von_mises.sample(n, seed=12345)

    expected_mean = von_mises.mean()
    actual_mean = tf.atan2(
        tf.reduce_mean(tf.sin(samples), 0), tf.reduce_mean(tf.cos(samples), 0))

    expected_variance = von_mises.variance()
    standardized_samples = samples - tf.expand_dims(von_mises.mean(), 0)
    actual_variance = 1. - tf.reduce_mean(tf.cos(standardized_samples), axis=0)

    [
        expected_mean_val, expected_variance_val, actual_mean_val,
        actual_variance_val
    ] = self.evaluate(
        [expected_mean, expected_variance, actual_mean, actual_variance])

    self.assertAllClose(expected_mean_val, actual_mean_val, rtol=0.1)
    self.assertAllClose(expected_variance_val, actual_variance_val, rtol=0.1)
Exemplo n.º 2
0
    np.log(200.0) + np.zeros(nl),
    np.log(150.0),
    np.log(300.0),
    dtype=T)
log_prior += log_jac

# Frequency spacing
log_dnu_param, log_dnu, log_jac, log_dnu_range = get_bounded_variable(
    "log_dnu", np.log(17.0), np.log(15.0), np.log(30.0), dtype=T)
log_prior += log_jac

# The phase for each mode
cp, sp = np.random.randn(2, nmodes)
phi_x, phi_y, cosphi, sinphi, log_jac = get_unit_vector("phi", cp, sp, dtype=T)
log_prior += log_jac
phi = tf.atan2(sinphi, cosphi)

# The parameters of the envelope
log_amp_param, log_amp, log_jac, log_amp_range = get_bounded_variable(
    "log_amp",
    np.log(np.random.uniform(0.015, 0.02, nl)),
    np.log(0.01),
    np.log(0.03),
    dtype=T)
log_prior += log_jac
log_width = tf.Variable(np.log(25.0), dtype=T, name="log_width")
curve = tf.Variable(0.001, dtype=T, name="curve")

# Initialize
session.run(tf.global_variables_initializer())
Exemplo n.º 3
0
                    cc.ops.reduceIndex(
                        pred_angle,
                        tf.expand_dims(tf.expand_dims(nla[i], axis=-1),
                                       axis=-1)))
                # with tf.device('/cpu:0'):
                # 	softmax_linear = cc.layers.monitorGrads(softmax_linear)
                # 	pred_angle = cc.layers.monitorGrads(pred_angle)
                cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                    logits=softmax_linear,
                    labels=nla[i],
                    name='cross_entropy_per_example_' + str(i))
                # nan2 = nan[i] - numpy.pi
                angleDif = nan[i] - pred_angle
                # angleDif2 = nan2 - pred_angle
                normAngleDif = tf.abs(
                    tf.atan2(tf.sin(angleDif), tf.cos(angleDif)))
                # normAngleDif2 = tf.abs(tf.atan2(tf.sin(angleDif2), tf.cos(angleDif2)))
                # normAngleDif = tf.reduce_min(tf.stack([normAngleDif, normAngleDif2], axis=0), axis=0)
                meanAnDif = tf.reduce_mean(normAngleDif,
                                           name="angle_loss_" + str(i))
                cross_entropy_mean = tf.reduce_mean(cross_entropy,
                                                    name='cross_entropy_' +
                                                    str(i))
                tf.add_to_collection('x_entropies', cross_entropy_mean)
                tf.add_to_collection('angle_losses', meanAnDif)

    # softmax_linear, prob, weightDecayFactor = inference(next_example, batch_size, "train", first=True, resuse_batch_norm=False)
    # cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=softmax_linear, labels=next_label, name='cross_entropy_per_example')
    # cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    # tf.add_to_collection('losses', cross_entropy_mean)
Exemplo n.º 4
0
def box_8c_to_box_3d(box_8c):
    """Computes the 3D bounding box corner positions from 8 corners.

    To go back from 8-corner representation to box3D, we need to reverse
    the transformation done in 'box_3d_to_box_8c'. The first thing we need
    is orientation, this is estimated by calculating the midpoints of
    P1 -> P2 and P3 -> P4. Connecting these midpoints, results to a vector
    which gives us the direction of the corners. However note that y-axis
    is facing downwards and hence we negate this orientation.

    Next we calculate the centroids by taking the average of four corners
    for x and z axes. We then translate the centroids back to the origin
    and then multiply by the rotation matrix, however now we are rotating
    the opposite direction, so the angle signs are reversed. After rotation
    we can translate the corners back however, there is one additional step
    before translation. Since we plan to regress corners, it is expected
    for the corners to be skewed, i.e. resulting to non-rectangular shapes.
    Hence we attempt to align the corners (by min/maxing the corners and
    aligning them by the min and max values for each corner. After this step
    we can translate back, and calculate length, width and height.

    Args:
        box_8c: An ndarray or a tensor of shape (N x 3 x 8) representing
            the box corners.
    Returns:
        corners_3d: An ndarray or a tensor of shape (3 x 8) representing
            the box as corners in this format -> [[x1,...,x8],[y1...,y8],
            [z1,...,z8]].
    """
    format_checker.check_box_8c_format(box_8c)

    #######################
    # calculate orientation
    #######################
    x_corners = box_8c[:, 0]
    y_corners = box_8c[:, 1]
    z_corners = box_8c[:, 2]

    x12_midpoint = (x_corners[:, 0] + x_corners[:, 1]) / 2
    z12_midpoint = (z_corners[:, 0] + z_corners[:, 1]) / 2

    x34_midpoint = (x_corners[:, 2] + x_corners[:, 3]) / 2
    z34_midpoint = (z_corners[:, 2] + z_corners[:, 3]) / 2

    # We use the midpoints to get a vector to figure out
    # the orientation
    delta_x = x12_midpoint - x34_midpoint
    delta_z = z12_midpoint - z34_midpoint
    # negate the orientation since y is downwards
    rys = -tf.atan2(delta_z, delta_x)

    # Calcuate the centroid by averaging four corners
    center_x = tf.reduce_mean(x_corners[:, 0:4], axis=1)
    center_z = tf.reduce_mean(z_corners[:, 0:4], axis=1)

    # Translate the centroid to the origin before rotation
    translated_x = box_8c[:, 0] - tf.reshape(center_x, (-1, 1))
    translated_z = box_8c[:, 2] - tf.reshape(center_z, (-1, 1))

    # The sign for the angle needs to be flipped because we
    # want to rotate back i.e. reverse rotation op we did during
    # transforming box_3d -> box_8c
    ry_sin = tf.sin(-rys)
    ry_cos = tf.cos(-rys)

    zeros = tf.zeros_like(rys, dtype=tf.float32)
    ones = tf.ones_like(rys, dtype=tf.float32)

    rotation_mats = tf.stack([
        tf.stack([ry_cos, zeros, ry_sin], axis=1),
        tf.stack([zeros, ones, zeros], axis=1),
        tf.stack([-ry_sin, zeros, ry_cos], axis=1)
    ],
                             axis=2)

    corners = tf.stack([translated_x, y_corners, translated_z], axis=1)
    # Rotate the corners
    corners_3d = tf.matmul(rotation_mats,
                           corners,
                           transpose_a=True,
                           transpose_b=False)

    # Align the corners in case they are skewed
    aligned_corners = align_boxes_8c(corners_3d)

    # Translate the corners back
    aligned_corners_x = aligned_corners[:, 0] + tf.reshape(center_x, (-1, 1))
    aligned_corners_z = aligned_corners[:, 2] + tf.reshape(center_z, (-1, 1))

    new_x_corners = aligned_corners_x
    new_y_corners = aligned_corners[:, 1]
    new_z_corners = aligned_corners_z

    x_b_right = new_x_corners[:, 1]
    x_b_left = new_x_corners[:, 2]

    z_b_left = new_z_corners[:, 2]
    z_t_left = new_z_corners[:, 3]

    corner_y1 = new_y_corners[:, 0]
    corner_y5 = new_y_corners[:, 4]

    length = x_b_right - x_b_left
    width = z_t_left - z_b_left
    height = corner_y1 - corner_y5

    # Re-calculate the centroid
    center_x = tf.reduce_mean(new_x_corners[:, 0:4], axis=1)
    center_z = tf.reduce_mean(new_z_corners[:, 0:4], axis=1)
    center_y = corner_y1

    box_3d = tf.stack(
        [center_x, center_y, center_z, length, width, height, rys], axis=1)
    return box_3d
# gradStrength = tf.sqrt(tpGrad[0]**2 + tpGrad[1]**2)
# pooledGrads, indexes = tf.nn.max_pool_with_argmax(gradStrength, [1,3,3,1], [1,1,1,1], padding='SAME')
# intIndeces = tf.cast(indexes, tf.int32)
# pooledTpGrads = [cc.ops.poolByIndex(tpGrad[0], intIndeces), cc.ops.poolByIndex(tpGrad[1], intIndeces)]
# avgrads = tf.concat(pooledTpGrads, axis=-1)
avgrads = tf.concat(tpGrad, axis=-1)
avgrads = tf.layers.average_pooling2d(avgrads*9, [5,5], [1,1], padding='SAME')

# grads = tf.concat(grad, axis=-1)
gradsRot = cc.transformations.rotateVectorField(avgrads, angle, irelevantAxisFirst=True)
splitGradsRot = tf.split(gradsRot, 2, -1)
gradStrength = tf.sqrt(splitGradsRot[0]**2 + splitGradsRot[1]**2)
noSmall = [tf.where(tf.abs(gradStrength)<10e-2, tf.zeros_like(splitGradsRot[0]), splitGradsRot[0]), tf.where(tf.abs(gradStrength)<10e-2, tf.zeros_like(splitGradsRot[1]), splitGradsRot[1])]
gamiesai = tf.concat(noSmall, axis=-1)
# gradsRot = tf.contrib.image.rotate(grads, angle, interpolation="BILINEAR")
ang = tf.atan2(noSmall[1],noSmall[0])
reMapped = tf.where(ang<-numpy.pi, ang+2*numpy.pi, ang)
reMapped = tf.where(reMapped>=numpy.pi, reMapped-2*numpy.pi, reMapped)
quantized = tf.round(reMapped/(numpy.pi/16))

rotInpt = tf.contrib.image.rotate(inpt, angle, interpolation="BILINEAR")
# avRotInpt = tf.layers.average_pooling2d(rotInpt, [5,5], [1,1], padding='SAME')
avRotInpt = rotInpt
rotGrad = tf.image.image_gradients(avRotInpt)
rottpGrad = []
rottpGrad.append(tf.nn.conv2d(rotGrad[0],wx,[1,1,1,1],"SAME")/2)
rottpGrad.append(tf.nn.conv2d(rotGrad[1],wy,[1,1,1,1],"SAME")/2)
# rotgradStrength = tf.sqrt(rottpGrad[0]**2 + rottpGrad[1]**2)
# pooledRotGrads, rIndexes = tf.nn.max_pool_with_argmax(rotgradStrength, [1,3,3,1], [1,1,1,1], padding='SAME')
# intRIndeces = tf.cast(rIndexes, tf.int32)
# pooledRotTpGrads = [cc.ops.poolByIndex(rottpGrad[0], intRIndeces), cc.ops.poolByIndex(rottpGrad[1], intRIndeces)]
Exemplo n.º 6
0
	def __init__(self, import_dir=None, nDim_high=None, nDim_low=None, layers=[],
		activations="tanh", encoder_activations=None, decoder_activations=None,
		last_layer="linear", norm="None",
		uniform_bias=False, uniform_weights=False, factor_bias=0.0, factor_weights=1.0,
		mode_bias='FAN_AVG', mode_weights='FAN_AVG', 
		optimizer="Adam", learning_rate=.001, momentum=.1, objective="L2", 
		load=False, number=None, dtype="float", tensorboard=True):
		"""
		Args:
			import_dir: string, path to directory which contains the saved model, all other arguments will be ignored except number and tensorboard
			nDim_high: number of input dimension of the data
			nDim_low: desired number of intermediate lowest dimensional representation
			layers: list of int. Size of input, all hidden and encoding layer. Specify this or nDim_high/nDim_low, not both.
			activations: to be used: relu, sigmoid, tanh, softsign, elu, selu, softmax, swish
			encoder_activation: activation function in the encoding layer, see activations
			last_layer: activation function for the last layer if given. The last layer has same size as output and performs one last transformation.
				Put None if you do not wish to have a such last layer
			norm: additional normalization; "None", "Layer", 
			weight/bias initialization parameter, see tf.contrib.layers.variance_scaling_initializer
				uniform, factor, mode (default is xavier initialization, set to 1, FAN_IN to self normalizing initialization
			optimizer: GradientDescent, Adam, Adagrad, Adadelta, Momentum
			learning_rate: the learning rate
			objective: the objective which is to be minimized, specify
				L2: quadratic distance between in/- and output
				CrossEntropy
			load: whether to load this model or create new one (path is standardized)
			number: which number to give the net, will give new number if None
			dtype: data type to be used in tensorflow, "float" or "double"
			tensorboard: whether to use the tensorboard
		"""
		
		if import_dir is not None:
			self.sess = tf.Session()
			self.sess.as_default()
			tf.saved_model.loader.load(self.sess, ["main"], import_dir)
			
			self.nLayer = self.sess.run("nLayer:0")
			self.layers = self.sess.run("layers:0")
			
			self.init = tf.global_variables_initializer()
		else:
			
			if dtype=="float":
				dtype = tf.float32
			else:
				dtype = tf.float64
			
			if not os.path.isdir("out"):
				os.makedirs("out")
			if not os.path.isdir("out/vid"):
				os.makedirs("out/vid")
			if tensorboard and not os.path.isdir("tmp"):
				os.makedirs("tmp")
				
			
			# self saves: layer, number, optimizer, ...?
			self.tensorboard = tensorboard
			
			# layer
			layers = [nDim_high] + list(layers)
			self.nLayer = len(layers) - 1
			self.layers = layers
			put_last_layer = last_layer is not None
			if not encoder_activations is None and len(encoder_activations) != self.nLayer:
				raise ValueError("Given length of encoder activations is invalid: {actlength} for size of {size}".format(actlength=len(encoder_activations), size=self.nLayer))
			if not decoder_activations is None and len(decoder_activations) != self.nLayer:
				raise ValueError("Given length of decoder activations is invalid: {actlength} for size of {size}".format(actlength=len(decoder_activations), size=self.nLayer))
				
			
			
			tf.constant(put_last_layer, name="put_last_layer")
			if not put_last_layer:
				last_layer = "None"
			tf.constant(last_layer, name="last_layer")
			tf.constant(self.nLayer, name="nLayer") # Use this one to def nLayer when loading a tensorflow model: self.nLayer = sess.run("nLayer:0")
			tf.constant(self.layers, name="layers") # Use this one to def layers when loading a tensorflow model: self.layers = sess.run("layers:0")
			tf.constant(activations, name="activations")
			tf.constant(norm, name="norm")
			
			self.flag_name = ("cAE" + "_%d"*len(layers)) % tuple(layers)
			self.save_path = "out/"+self.flag_name+".ckpt"
			print("Encoder network layers (inclusive in/- and output): ", end="")
			print(layers + [1])
			

		
			# neural net: input
			x = tf.placeholder(dtype, shape=[None,nDim_high], name="x")
			y = tf.placeholder(dtype, shape=[None,nDim_low], name="y") # this is an "encoding" custom input node
			
			
			freq = tf.constant([[1,1]], name='freq', dtype=dtype)
			phase = tf.get_variable('trainable/phase', initializer=[np.pi/2,0], trainable=False)
			if nDim_low == 1:
				pass
			elif nDim_low == 2:
				capR = tf.get_variable('trainable/capR', dtype=tf.float32, initializer=[1.,1.], trainable=True)
			else:
				raise ValueError("Currently only nDim_low = 1 allowed!")

			initializer_bias = lambda: tf.contrib.layers.variance_scaling_initializer(factor=factor_bias, mode=mode_bias, uniform=uniform_bias)
			initializer_weights = lambda: tf.contrib.layers.variance_scaling_initializer(factor=factor_weights, mode=mode_weights, uniform=uniform_weights)
			
			# encoder:
			intermediate_layers = layers[1:]
			weightNames = ["encoder_weights_d%d"%d for d in range(self.nLayer)]
			biasNames = ["encoder_bias_d%d"%d for d in range(self.nLayer)]
			activation_fn = [_get_activation(activations) for _ in range(self.nLayer)] if encoder_activations is None else [_get_activation(encoder_activations[d]) for d in range(self.nLayer)]
			aname = ["encoder_act_d%d"%(d) for d in range(self.nLayer)]
			layer_norm_name = ["encoder_layer_norm_d%d"%d for d in range(self.nLayer)]
			
			enc = self._fully_connected_stack(x, weightNames, biasNames, intermediate_layers, activation_fn,
					initializer_bias(), initializer_weights(), aname, norm=norm, layer_norm_name=layer_norm_name, reuse=False, transpose=False)
			
			# tanh transformations
			wx = tf.get_variable('trainable/encoder/wx', shape=[layers[-1],nDim_low + 1], initializer=initializer_weights())
			bx = tf.get_variable('trainable/encoder/bx', shape=[nDim_low + 1], initializer=initializer_bias())
			xxx = tf.add(tf.matmul(enc, wx), bx, name="xxx")
			if nDim_low == 1:
				phi = tf.reshape(tf.atan2(xxx[:,1], xxx[:,0]), [-1, 1], name='phi')
			if nDim_low == 2:
				# theta = tf.asin(tf.nn.sigmoid(xxx[:,2]))
				theta = xxx[:,2]
				cosTheta = tf.cos(theta)
				sinTheta = tf.sin(theta)
				phi1 = tf.reshape(tf.atan2(xxx[:,1]/(1 + cosTheta), xxx[:,0]/(1 + cosTheta)), [-1,1])
				
				phi = tf.concat([tf.reshape(theta, [-1,1]), phi1], axis=1, name='phi')
			# decoder:				
			# circularity
			if nDim_low == 1:						
				circ = tf.sin(tf.matmul(phi, freq) + phase, name="circ")
				circ_custom = tf.sin(tf.matmul(y, freq) + phase, name="circ_custom")
			if nDim_low == 2:
				xback_yback = (capR + tf.reshape(tf.tile(cosTheta, [2]), [-1,2]))*tf.sin(tf.matmul(phi1, freq) + phase)
				circ = tf.transpose(tf.stack([xback_yback[:,0], xback_yback[:,1], sinTheta], name="circ"))
				
				# custom
				sinTheta_custom = tf.sin(y[:,1])
				cosTheta_custom = tf.cos(y[:,1])
				xback_yback_custom = (capR + tf.reshape(tf.tile(cosTheta_custom, [2]), [-1,2]))*tf.sin(tf.matmul(tf.reshape(y[:,0], [-1,1]), freq) + phase)
				circ_custom = tf.transpose(tf.stack([xback_yback_custom[:,0], xback_yback_custom[:,1], sinTheta_custom], name="circ_custom"))

			# rest
			intermediate_layers = list(layers[self.nLayer - 1::-1])
			wName = "decoder"
			weightNames = ["%s_weights_d%d"%(wName,d) for d in range(self.nLayer - 1 + put_last_layer, -1, -1)]
			biasNames = ["decoder_bias_d%d"%d for d in range(self.nLayer - 1 + put_last_layer, -1, -1)]
			activation_fn = [_get_activation(activations) for d in range(self.nLayer - 1, -1, -1)] if decoder_activations is None else [_get_activation(decoder_activations[d]) for d in range(self.nLayer)]
			aname = ["decoder_act_d%d"%(d) for d in range(self.nLayer - 1 + put_last_layer, -1, -1)]
			layer_norm_name = ["decoder_layer_norm_d%d"%d for d in range(self.nLayer - 1 + put_last_layer, -1, -1)]
			scope_name="trainable/%s"%wName
			
			if put_last_layer:
				intermediate_layers.append(layers[0])
				activation_fn.append(_get_activation(last_layer))

			dec = self._fully_connected_stack(circ, weightNames, biasNames, intermediate_layers, activation_fn,
					initializer_bias(), initializer_weights(), aname, norm=norm, layer_norm_name=layer_norm_name, reuse=False, transpose=False, scope_name=scope_name)
			
			# Now build one additional FULL path in the case where the user wants the decoding of his own latent space points
			aname = ["decoder_act_custom_d%d"%(d) for d in range(self.nLayer - 1 + put_last_layer, -1, -1)]
			decoder_custom = self._fully_connected_stack(circ_custom, weightNames, biasNames, intermediate_layers, activation_fn,
						None, None, aname, norm=norm, layer_norm_name=layer_norm_name, 
						reuse=True, transpose=False, scope_name=scope_name)

					
			# Quadratic loss, start learning from p=0
			l2_loss = tf.reduce_mean(tf.square(x - dec), name="l2_loss")
			# Reconstruction error
			l2_loss_single = tf.reduce_mean(tf.square(x - dec), axis=1, name="l2_loss_single")
			l2_loss_single_feature = tf.square(x - dec, name="l2_loss_single_feature")
			
			
			# the optimizer, one for normal and one for the encoder
			optimizerOp = _get_optimizer(optimizer, learning_rate, momentum)
			optimizerEnc = _get_optimizer(optimizer, name=optimizer + "_encoder")
			
			
			# the train step, one for each optimizer
			train = optimizerOp.minimize(l2_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES), name="train")
			train_enc = optimizerEnc.minimize(l2_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="trainable/encoder"), name="train_encoder")
			
			# Session and initialization
			self.sess = tf.Session()
			self.sess.as_default()
			self.init = tf.global_variables_initializer()
			

			# Tensorboard
			if tensorboard:
				# merged_p = []
				tf.summary.scalar("l2_loss", l2_loss)
				# Variable summaries
				# tf.summary.histogram("w_encoder_%d" % p, self.variables[2*p,0])
				# tf.summary.histogram("b_encoder_%d" % p, self.variables[2*p,1])
				# tf.summary.histogram("w_decoder_%d" % p, self.variables[2*p+1,0])
				# tf.summary.histogram("b_decoder_%d" % p, self.variables[2*p+1,1])
				# Activation summaries
				# Encoder
				if nDim_low == 1:
					tf.summary.histogram("a_encoder", phi)
				# Decoder
				
				# tf.summary.scalar("cross_entropy_%d" % p, self.cross_entropy[p])
				#self.merged_p.append(tf.summary.merge(["l2_loss_%d" % p]))
				pass
				merged = tf.summary.merge_all()

				if number is None and load:
					self.number = self._get_number(last=False)
				elif number is None:
					self.number = self._get_number()
				twriter_path = os.path.join(os.getcwd(), "tmp", "summary_" + self.flag_name + ("_%d" % self.number))
				self.test_writer = tf.summary.FileWriter(twriter_path, self.sess.graph)
				print("To use tensorboard, type:")
				print("tensorboard --logdir='" + twriter_path + "'")
			
			# Save and Load
			self.saver = tf.train.Saver()
			if load:
				self.saver.restore(self.sess, self.save_path)
			else:
				# Initialize all variables
				self.sess.run(self.init)
Exemplo n.º 7
0
 def phi(self):
     """
     Azimuth.
     """
     return tf.atan2(tf_non_zero(self.py(), self.epsilon), self.px())
Exemplo n.º 8
0
    def extract_descriptor(self,
                           image_shape):
        """ Main function of this class, which extracts the descriptors from
        a batch of images.

        Args:
            image_shape : Tuple(int, int).
                A tuple (height, width) indicating the size of the input
                images.

        Returns:
            (This explanation below is modified from scikit-image).
            descs : 4D array of floats
                Grid of DAISY descriptors for the given image as an array
                dimensionality  (N, P, Q, R) where
                ``N = len(images)``
                ``P = ceil((M - radius*2) / step)``
                ``Q = ceil((N - radius*2) / step)``
                ``R = (rings * histograms + 1) * orientations``
        """
        images = tf.placeholder(
            tf.float32, shape=[None, 1, image_shape[0], image_shape[1]])
        images /= 255.0

        dx = images[:, :, :, 1:] - images[:, :, :, :-1]
        dx = tf.pad(
            dx,
            tf.constant([[0, 0], [0, 0], [0, 0], [0, 1]]))
        dy = images[:, :, 1:, :] - images[:, :, :-1, :]
        dy = tf.pad(
            dy,
            tf.constant([[0, 0], [0, 0], [0, 1], [0, 0]]))

        # Compute gradient orientation and magnitude and their contribution
        # to the histograms.
        grad_mag = tf.sqrt(dx ** 2 + dy ** 2)
        grad_ori = tf.atan2(dy, dx)
        hist = tf.exp(self.orientation_kappa * tf.cos(
            grad_ori - self.orientation_angles))
        hist *= grad_mag

        # Smooth orientation histograms for the center and all rings.
        hist_smooth = self._compute_ring_histograms(hist)

        # Assemble descriptor grid.
        theta = np.array([2 * np.pi * j / self.histograms
                          for j in range(self.histograms)])
        desc_dims = (self.rings * self.histograms + 1) * self.orientations
        desc_shape = (images.shape[2] - 2 * self.radius,
                      images.shape[3] - 2 * self.radius)
        idx = self.orientations
        cos_theta = tf.cos(theta)
        sin_theta = tf.sin(theta)
        descs = [hist_smooth[
            :, 0, :, self.radius:-self.radius, self.radius:-self.radius]]
        for i in range(self.rings):
            for j in range(self.histograms):
                y_min = self.radius + tf.cast(tf.round(
                    self.ring_radii[i] * sin_theta[j]), tf.int32)
                y_max = desc_shape[0] + y_min
                x_min = self.radius + tf.cast(tf.round(
                    self.ring_radii[i] * cos_theta[j]), tf.int32)
                x_max = desc_shape[1] + x_min
                descs.append(hist_smooth[
                    :, i + 1, :, y_min:y_max, x_min:x_max])
                idx += self.orientations
        descs = tf.concat(descs, axis=1)
        descs = descs[:, :, ::self.step, ::self.step]
        descs = tf.transpose(descs, [0, 2, 3, 1])

        # Normalize descriptors.
        if self.normalization != 'off':
            descs += 1e-10
            if self.normalization == 'l1':
                descs /= tf.reduce_sum(descs, axis=3, keepdims=True)
            elif self.normalization == 'l2':
                descs /= tf.sqrt(tf.reduce_sum(
                    tf.pow(descs, 2), axis=3, keepdims=True))
            elif self.normalization == 'daisy':
                for i in range(0, desc_dims, self.orientations):
                    norms = tf.sqrt(tf.reduce_sum(
                        tf.pow(descs[:, :, :, i:i + self.orientations], 2),
                        axis=3, keepdims=True))
                    descs[:, :, :, i:i + self.orientations] /= norms

        return images, descs
Exemplo n.º 9
0
from dnnlib import tflib
from training import dataset

tflib.init_tf()
minibatch_size = 1
training_set = dataset.TFRecordDataset('../datasets/car_labels_v7_oversample_filter')
interpolation_prob = 0.2

rotation_offset = 108
labels_original = training_set.get_random_labels_tf(minibatch_size)

# Mirror some labels to balance the rotatinos
random_vector = tf.random_uniform([minibatch_size]) < 0.5
rotation_cos = tf.expand_dims(labels_original[:, rotation_offset], axis=-1)
rotation_sin = tf.expand_dims(labels_original[:, rotation_offset + 1], axis=-1)
angle = tf.atan2(rotation_sin, rotation_cos)
new_rotation_cos = tf.cos(angle)
new_rotation_sin = tf.sin(angle) * -1
mirrored_labels = tf.concat([
    labels_original[:, :rotation_offset],
    new_rotation_cos,
    new_rotation_sin,
    labels_original[:, rotation_offset + 2:]
], axis=1)
labels = tf.where(random_vector, labels_original, mirrored_labels)

# Remove half of front left and front right to balance the rotation label
zero_rotation = tf.expand_dims(tf.zeros([minibatch_size]), axis=-1)
removed_labels = tf.concat([
    labels[:, :rotation_offset],
    zero_rotation,
Exemplo n.º 10
0
def rayTraceSinglePass(
    rays,
    boundarySegments,
    boundaryArcs,
    targetSegments,
    targetArcs,
    materials,
    epsilion=1e-6,
):
    if boundarySegments is not None:
        b_usingSegments = True
    else:
        b_usingSegments = False

    if boundaryArcs is not None:
        b_usingArcs = True
    else:
        b_usingArcs = False

    with tf.name_scope("rayTraceSingle") as scope:
        # rayRange is just a list of all ray indexes, useful for constructing index tensors to be used
        # with gather
        with tf.name_scope("rayRange") as scope:
            rayRange = tf.range(
                tf.shape(rays, out_type=tf.int64)[0], dtype=tf.int64, name="rayRange"
            )

        # join boundaries and targets, for the purposes of finding the closest intersection
        with tf.name_scope("segmentTargetJoining") as scope:
            if b_usingSegments:
                opticalSegmentCount = tf.cast(
                    tf.shape(boundarySegments)[0], dtype=tf.int64
                )
            else:
                opticalSegmentCount = 0

            if targetSegments is not None:
                targetSegments = tf.pad(targetSegments, [[0, 0], [0, 2]])
                if b_usingSegments:
                    boundarySegments = tf.concat(
                        (boundarySegments, targetSegments),
                        0,
                        name="joinedBoundarySegments",
                    )
                elif targetSegments.shape[0] != 0:
                    boundarySegments = targetSegments
                    b_usingSegments = True

        with tf.name_scope("arcTargetJoining") as scope:
            if b_usingArcs:
                opticalArcCount = tf.cast(tf.shape(boundaryArcs)[0], dtype=tf.int64)
            else:
                opticalArcCount = 0

            if targetArcs is not None:
                targetArcs = tf.pad(targetArcs, [[0, 0], [0, 2]])
                if b_usingArcs:
                    boundaryArcs = tf.concat(
                        (boundaryArcs, targetArcs), 0, name="joinedBoundaryArcs"
                    )
                elif targetArcs.shape[0] != 0:
                    boundaryArcs = targetArcs
                    b_usingArcs = True

        # slice the input rays into sections
        with tf.name_scope("inputRaySlicing") as scope:
            xstart = rays[:, 0]
            ystart = rays[:, 1]
            xend = rays[:, 2]
            yend = rays[:, 3]

        # intersect rays and boundary segments
        if b_usingSegments:
            with tf.name_scope("ray-SegmentIntersection") as scope:
                with tf.name_scope("variableMeshing") as scope:
                    xa1, xb1 = tf.meshgrid(xstart, boundarySegments[:, 0])
                    ya1, yb1 = tf.meshgrid(ystart, boundarySegments[:, 1])
                    xa2, xb2 = tf.meshgrid(xend, boundarySegments[:, 2])
                    ya2, yb2 = tf.meshgrid(yend, boundarySegments[:, 3])

                xa = xa2 - xa1
                ya = ya2 - ya1
                xb = xb2 - xb1
                yb = yb2 - yb1

                # v is the parameter of the intersection for B (bounds), and u is for A (rays).  inf values signify
                # that this pair of lines is parallel
                with tf.name_scope("raw_v_parameter") as scope:
                    denominator = xa * yb - ya * xb
                    validSegmentIntersection = tf.greater_equal(
                        tf.abs(denominator), epsilion
                    )
                    safe_value = tf.ones_like(denominator)
                    safe_denominator = tf.where(
                        validSegmentIntersection, denominator, safe_value
                    )

                    segmentV = tf.where(
                        validSegmentIntersection,
                        (ya * (xb1 - xa1) - xa * (yb1 - ya1)) / safe_denominator,
                        safe_value,
                    )
                with tf.name_scope("raw_u_parameter") as scope:
                    segmentU = tf.where(
                        validSegmentIntersection,
                        (xb * (ya1 - yb1) - yb * (xa1 - xb1)) / safe_denominator,
                        safe_value,
                    )

                # Since B encodes line segments, not infinite lines, purge all occurances in v which are <=0 or >=1
                # since these imply rays that did not actually strike the segment, only intersected with its
                # infinite continuation.
                # And since A encodes semi-infinite rays, purge all occurances in u which are <epsilion, since
                # these are intersections that occur before the ray source.  We need to compare to epsilion to take
                # account of rays that are starting on a boundary
                with tf.name_scope("selectClosestValidIntersection") as scope:
                    validSegmentIntersection = tf.logical_and(
                        validSegmentIntersection, tf.greater_equal(segmentV, -epsilion)
                    )
                    validSegmentIntersection = tf.logical_and(
                        validSegmentIntersection,
                        tf.less_equal(segmentV, 1.0 + epsilion),
                    )
                    validSegmentIntersection = tf.logical_and(
                        validSegmentIntersection, tf.greater_equal(segmentU, epsilion)
                    )

                # true where a ray intersection was actually found (since raySegmentIndices = 0 if the ray
                # intersects with boundary 0, or if there was no intersection
                with tf.name_scope("raySegmentMask") as scope:
                    raySegmentMask = tf.reduce_any(validSegmentIntersection, axis=0)

                # match segmentU to each ray
                with tf.name_scope("segmentU") as scope:
                    # raySegmentIndices tells us which ray intersects with which boundary.
                    # raySegmentIndices[n]=m => ray n intersects boundary segment m
                    inf = 2 * tf.reduce_max(segmentU) * safe_value
                    segmentU = tf.where(validSegmentIntersection, segmentU, inf)
                    raySegmentIndices = tf.argmin(
                        segmentU, axis=0, name="raySegmentIndices"
                    )

                    # intersectIndicesSquare is a set of indices that can be used with gather_nd to select
                    # positions out of the grid tensors
                    intersectIndicesSquare = tf.transpose(
                        tf.stack([raySegmentIndices, rayRange])
                    )

                    # the u parameter for ray intersections, after filtering and processing
                    segmentU = tf.gather_nd(
                        segmentU, intersectIndicesSquare, name="segmentU"
                    )

                    # package and pair the boundary segments with the rays that intersect with them
                    boundarySegments = tf.gather(
                        boundarySegments, raySegmentIndices, name="boundarySegments"
                    )

        # intersect rays and boundary arcs
        if b_usingArcs:
            with tf.name_scope("ray-ArcIntersection") as scope:
                with tf.name_scope("inputMeshgrids") as scope:
                    x1, xc = tf.meshgrid(xstart, boundaryArcs[:, 0])
                    y1, yc = tf.meshgrid(ystart, boundaryArcs[:, 1])
                    x2, thetaStart = tf.meshgrid(xend, boundaryArcs[:, 2])
                    y2, thetaEnd = tf.meshgrid(yend, boundaryArcs[:, 3])
                    y2, r = tf.meshgrid(tf.reshape(yend, [-1]), boundaryArcs[:, 4])
                    # the reshape in the above line shouldn't be necessary, but I was getting some really wierd
                    # bugs that went away whenever I tried to read the damn tensor, and this fixes it for some
                    # reason.

                # a, b, c here are parameters to a quadratic equation for u, so we have some special cases to deal
                # with
                # a = 0 => ray of length zero.  This should never happen, but if it does, should invalidate
                # the intersections
                # rad < 0 => ray does not intersect circle

                # ?????
                # c = 0 => ray starts on circle => u = 0, -b/c
                #                                  c = 0 => ray ends on circle??? My mind has changed on this
                with tf.name_scope("coordinateAdjusting") as scope:
                    xr = (x1 - xc) / r
                    yr = (y1 - yc) / r
                    xd = (x2 - x1) / r
                    yd = (y2 - y1) / r

                with tf.name_scope("quadraticEquationParts") as scope:
                    with tf.name_scope("a") as scope:
                        a = xd * xd + yd * yd
                    with tf.name_scope("b") as scope:
                        b = 2.0 * xr * xd + 2.0 * yr * yd
                    with tf.name_scope("c") as scope:
                        c = xr * xr + yr * yr - 1.0

                    with tf.name_scope("rad") as scope:
                        rad = b * b - 4.0 * a * c

                safe_value = tf.ones_like(a, name="safe_value")

                with tf.name_scope("raw_u_parameter") as scope:
                    # u will be the parameter of the intersections along the ray
                    # rad < 0 special case
                    with tf.name_scope("specialCase_complex") as scope:
                        radLess = tf.less(rad, 0)
                        uminus_valid = uplus_valid = tf.logical_not(radLess)
                        safe_rad = tf.where(radLess, safe_value, rad)

                        uminus = tf.where(radLess, safe_value, (-b - tf.sqrt(safe_rad)))
                        uplus = tf.where(radLess, safe_value, (-b + tf.sqrt(safe_rad)))

                    # a = 0 special case
                    with tf.name_scope("specialCase_azero") as scope:
                        azero = tf.less(tf.abs(a), epsilion)
                        safe_a = tf.where(azero, safe_value, 2 * a)

                        uminus_valid = tf.logical_and(
                            uminus_valid, tf.logical_not(azero)
                        )
                        uminus = tf.where(azero, safe_value, uminus / safe_a)

                        uplus_valid = tf.logical_and(uplus_valid, tf.logical_not(azero))
                        uplus = tf.where(azero, safe_value, uplus / safe_a)

                        """
                        czero = tf.less(tf.abs(c), epsilion)
                        safe_c = tf.where(czero, safe_value, c)
                        
                        uplus_valid = tf.logical_and(uplus_valid, tf.logical_not(czero))
                        b_over_c = tf.where(czero, safe_value, b/safe_c)
                        uplus = tf.where(azero, -b_over_c, uplus/safe_a)
                        #uplus = tf.where(azero, -b/c, uplus/safe_a)"""

                    # cut out all of the rays that have a u < epsilion parameter, since we only want reactions
                    # ahead of the ray
                    with tf.name_scope("cullNegativeU") as scope:
                        uminus_valid = tf.logical_and(
                            uminus_valid, tf.greater_equal(uminus, epsilion)
                        )
                        uplus_valid = tf.logical_and(
                            uplus_valid, tf.greater_equal(uplus, epsilion)
                        )

                with tf.name_scope("raw_v_parameter") as scope:
                    # determine the x,y coordinate of the intersections
                    with tf.name_scope("xminus") as scope:
                        xminus = x1 + (x2 - x1) * uminus
                    with tf.name_scope("xplus") as scope:
                        xplus = x1 + (x2 - x1) * uplus
                    with tf.name_scope("yminus") as scope:
                        yminus = y1 + (y2 - y1) * uminus
                    with tf.name_scope("yplus") as scope:
                        yplus = y1 + (y2 - y1) * uplus

                    # determine the angle along the arc (arc's parameter) where the intersection occurs
                    """ these atan2 calls seem to be f*****g up the gradient.  So I have to do something
                    convoluted."""
                    """
                    finiteUMinus = tf.debugging.is_finite(uminus)
                    finiteUPlus = tf.debugging.is_finite(uplus)
                    
                    def safe_atan2(y, x, safe_mask):
                        with tf.name_scope("safe_atan") as scope:
                            safe_x = tf.where(safe_mask, x, tf.ones_like(x))
                            safe_y = tf.where(safe_mask, y, tf.ones_like(y))
                            return tf.where(safe_mask, tf.atan2(safe_y, safe_x), tf.zeros_like(safe_x))"""

                    vminus = tf.atan2(yminus - yc, xminus - xc)
                    # vminus = safe_atan2(yminus-yc, xminus-xc, finiteUMinus)
                    vminus = tf.floormod(vminus, 2 * PI)

                    vplus = tf.atan2(yplus - yc, xplus - xc)
                    # vplus = safe_atan2(yplus-yc, xplus-xc, finiteUPlus)
                    vplus = tf.floormod(vplus, 2 * PI)

                # Cut out all cases where v does not fall within the angular extent of the arc
                with tf.name_scope("selectValid_v") as scope:
                    # my angle in interval algorithm fails when the interval is full (0->2PI).  So making the
                    # following adjustment to thetaStart
                    thetaStart = thetaStart + epsilion
                    vminus_valid = tf.less_equal(
                        tf.floormod(vminus - thetaStart, 2 * PI),
                        tf.floormod(thetaEnd - thetaStart, 2 * PI),
                    )
                    uminus_valid = tf.logical_and(vminus_valid, uminus_valid)

                    vplus_valid = tf.less_equal(
                        tf.floormod(vplus - thetaStart, 2 * PI),
                        tf.floormod(thetaEnd - thetaStart, 2 * PI),
                    )
                    uplus_valid = tf.logical_and(vplus_valid, uplus_valid)

                # now we can finally select between the plus and minus cases
                # arcU = tf.where(tf.less(uminus, uplus), uminus, uplus, name="arcU")
                # arcV = tf.where(tf.less(uminus, uplus), vminus, vplus, name="arcV")
                with tf.name_scope("choosePlusOrMinus") as scope:
                    # We have been keeping track of valid and invalid intersections in the u+/-_valid tensors.  But
                    # now we need to compare the values in the u+/- tensors and prepare for the argmin call that
                    # finds only the closest intersections.  To do this we now need to fill the invalid values in
                    # each tensor with some value that is larger than any valid value.  Unfortunately we cannot
                    # use np.inf because that seems to mess with the gradient calculator.
                    inf = (
                        2
                        * safe_value
                        * tf.reduce_max([tf.reduce_max(uminus), tf.reduce_max(uplus)])
                    )
                    uminus = tf.where(uminus_valid, uminus, inf)
                    uplus = tf.where(uplus_valid, uplus, inf)

                    choose_uminus = tf.less(uminus, uplus)

                    uminus_valid = tf.logical_and(uminus_valid, choose_uminus)
                    uplus_valid = tf.logical_and(
                        uplus_valid, tf.logical_not(choose_uminus)
                    )

                    # rayArcMask will tell us which rays have found at least one valid arc intersection
                    rayArcMask = tf.logical_or(uminus_valid, uplus_valid)
                    rayArcMask = tf.reduce_any(rayArcMask, axis=0)

                    arcU = tf.where(choose_uminus, uminus, uplus)
                    arcV = tf.where(choose_uminus, vminus, vplus)

                """
                # true where a ray intersection was actually found
                with tf.name_scope("rayArcMask") as scope:
                    rayArcMask = tf.is_finite(arcU)
                    rayArcMask = tf.reduce_any(rayArcMask, axis=0)"""

                # match arcU to each ray
                with tf.name_scope("arcU_and_arcV") as scope:
                    # rayArcIndices tells us which ray intersects with which boundary.
                    # rayArcIndices[n]=m => ray n intersects boundary segment m
                    rayArcIndices = tf.argmin(arcU, axis=0, name="rayArcIndices")

                    # intersectIndicesSquare is a set of indices that can be used with gather_nd to select
                    # positions out of the grid tensors
                    intersectIndicesSquare = tf.transpose(
                        tf.stack([rayArcIndices, rayRange])
                    )

                    # the u parameter for ray intersections, after filtering and processing
                    arcU = tf.gather_nd(arcU, intersectIndicesSquare, name="arcU")
                    arcV = tf.gather_nd(arcV, intersectIndicesSquare, name="arcV")

                    # package and pair the boundary arcs with the rays that intersect with them
                    boundaryArcs = tf.gather(
                        boundaryArcs, rayArcIndices, name="boundaryArcs"
                    )

        # determine which rays are dead
        with tf.name_scope("deadRays") as scope:
            if b_usingSegments and b_usingArcs:
                deadRays = tf.boolean_mask(
                    rays,
                    tf.logical_not(tf.logical_or(rayArcMask, raySegmentMask)),
                    name="deadRays",
                )
            else:
                if b_usingSegments:
                    deadRays = tf.boolean_mask(
                        rays, tf.logical_not(raySegmentMask), name="deadRays"
                    )
                elif b_usingArcs:
                    deadRays = tf.boolean_mask(
                        rays, tf.logical_not(rayArcMask), name="deadRays"
                    )
                else:
                    raise RuntimeError(
                        "rayTraceSinglePass: no boundaries provided for raytracing"
                    )

        # select between segment and arc intersections
        with tf.name_scope("arc_segment_selection") as scope:
            if b_usingSegments and b_usingArcs:
                chooseSegment = tf.logical_and(
                    tf.less(segmentU, arcU), raySegmentMask, name="chooseSegment"
                )
                chooseSegment = tf.logical_or(
                    chooseSegment,
                    tf.logical_and(raySegmentMask, tf.logical_not(rayArcMask)),
                )

                chooseArc = tf.logical_and(
                    tf.logical_not(chooseSegment), rayArcMask, name="chooseArc"
                )
                chooseArc = tf.logical_or(
                    chooseArc,
                    tf.logical_and(rayArcMask, tf.logical_not(raySegmentMask)),
                )
            else:
                if b_usingSegments:
                    chooseSegment = raySegmentMask
                if b_usingArcs:
                    chooseArc = rayArcMask

        # project ALL rays into the boundaries.  Rays that do not intersect with any boundaries will also be
        # projected to zero length, but these will be filtered off later
        with tf.name_scope("rayProjection") as scope:
            if b_usingSegments:
                with tf.name_scope("segments") as scope:
                    xstart = rays[:, 0]
                    ystart = rays[:, 1]
                    xend = rays[:, 2]
                    yend = rays[:, 3]
                    xend = xstart + (xend - xstart) * segmentU
                    yend = ystart + (yend - ystart) * segmentU
                    reactedRays_Segment = tf.stack(
                        [xstart, ystart, xend, yend, rays[:, 4], rays[:, 5]], axis=1
                    )

            if b_usingArcs:
                with tf.name_scope("arcs") as scope:
                    xstart = rays[:, 0]
                    ystart = rays[:, 1]
                    xend = rays[:, 2]
                    yend = rays[:, 3]
                    xend = xstart + (xend - xstart) * arcU
                    yend = ystart + (yend - ystart) * arcU
                    reactedRays_Arc = tf.stack(
                        [xstart, ystart, xend, yend, rays[:, 4], rays[:, 5]], axis=1
                    )

        # determine which rays are finished
        with tf.name_scope("finishedRays") as scope:
            finishedRays = tf.zeros([0, 6], dtype=tf.float64)

            if b_usingSegments:
                finishedSegmentMask = tf.greater_equal(
                    raySegmentIndices, opticalSegmentCount, name="finishedSegmentMask"
                )
                fsMask = tf.logical_and(finishedSegmentMask, chooseSegment)
                finishedRays_Segment = tf.boolean_mask(reactedRays_Segment, fsMask)
                finishedRays = tf.cond(
                    tf.reduce_any(fsMask),
                    lambda: tf.concat([finishedRays, finishedRays_Segment], axis=0),
                    lambda: finishedRays,
                )

            if b_usingArcs:
                finishedArcMask = tf.greater_equal(
                    rayArcIndices, opticalArcCount, name="finishedArcMask"
                )
                faMask = tf.logical_and(finishedArcMask, chooseArc)
                finishedRays_Arc = tf.boolean_mask(reactedRays_Arc, faMask)
                finishedRays = tf.cond(
                    tf.reduce_any(faMask),
                    lambda: tf.concat([finishedRays, finishedRays_Arc], axis=0),
                    lambda: finishedRays,
                )

        # conjugate to finished rays
        with tf.name_scope("reactedRays") as scope:
            reactedRays = tf.zeros([0, 6], dtype=tf.float64)

            if b_usingSegments:
                chooseSegment = tf.logical_and(
                    tf.logical_not(finishedSegmentMask), chooseSegment
                )
                reactedRays_Segment = tf.boolean_mask(
                    reactedRays_Segment, chooseSegment, name="reactedRays_Segment"
                )
                boundarySegments = tf.boolean_mask(
                    boundarySegments, chooseSegment, name="boundarySegments"
                )
                reactedRays = tf.cond(
                    tf.reduce_any(chooseSegment),
                    lambda: tf.concat([reactedRays, reactedRays_Segment], axis=0),
                    lambda: reactedRays,
                )

            if b_usingArcs:
                chooseArc = tf.logical_and(tf.logical_not(finishedArcMask), chooseArc)
                reactedRays_Arc = tf.boolean_mask(
                    reactedRays_Arc, chooseArc, name="reactedRays_Arc"
                )
                arcV = tf.boolean_mask(arcV, chooseArc, name="arcV")
                boundaryArcs = tf.boolean_mask(
                    boundaryArcs, chooseArc, name="boundaryArcs"
                )
                reactedRays = tf.cond(
                    tf.reduce_any(chooseArc),
                    lambda: tf.concat([reactedRays, reactedRays_Arc], axis=0),
                    lambda: reactedRays,
                )

        # calculate the norm of the surface
        with tf.name_scope("norm") as scope:
            norm = tf.zeros([0], dtype=tf.float64)

            if b_usingSegments:
                normSegment = (
                    tf.atan2(
                        boundarySegments[:, 3] - boundarySegments[:, 1],
                        boundarySegments[:, 2] - boundarySegments[:, 0],
                        name="normSegment",
                    )
                    + PI / 2
                )
                norm = tf.cond(
                    tf.reduce_any(chooseSegment),
                    lambda: tf.concat([norm, normSegment], axis=0),
                    lambda: norm,
                )

            if b_usingArcs:
                normArc = tf.where(
                    tf.less(boundaryArcs[:, 4], 0), arcV + PI, arcV, name="normArc"
                )
                normArc = tf.floormod(normArc, 2 * PI)
                norm = tf.cond(
                    tf.reduce_any(chooseArc),
                    lambda: tf.concat([norm, normArc], axis=0),
                    lambda: norm,
                )

        with tf.name_scope("refractiveIndex") as scope:
            # calculate the refractive index for every material and ray
            wavelengths = reactedRays[:, 4]
            nstack = tf.stack(
                [each(wavelengths) for each in materials], axis=1, name="nstack"
            )
            rayRange = tf.range(
                tf.shape(reactedRays)[0], dtype=tf.int32, name="rayRange"
            )

            # select just the correct entry for n_in and n_out
            if b_usingSegments and b_usingArcs:
                n_in_indices = tf.concat(
                    [boundarySegments[:, 4], boundaryArcs[:, 5]],
                    axis=0,
                    name="n_in_indices",
                )
            else:
                if b_usingSegments:
                    n_in_indices = boundarySegments[:, 4]
                if b_usingArcs:
                    n_in_indices = boundaryArcs[:, 5]
            n_in_indices = tf.cast(n_in_indices, tf.int32)
            n_in_indices = tf.transpose(tf.stack([rayRange, n_in_indices]))
            n_in = tf.gather_nd(nstack, n_in_indices, name="n_in")

            if b_usingSegments and b_usingArcs:
                n_out_indices = tf.concat(
                    [boundarySegments[:, 5], boundaryArcs[:, 6]],
                    axis=0,
                    name="n_out_indices",
                )
            else:
                if b_usingSegments:
                    n_out_indices = boundarySegments[:, 5]
                if b_usingArcs:
                    n_out_indices = boundaryArcs[:, 6]
            n_out_indices = tf.cast(n_out_indices, tf.int32)
            n_out_indices = tf.transpose(tf.stack([rayRange, n_out_indices]))
            n_out = tf.gather_nd(nstack, n_out_indices, name="n_out")

        activeRays = react(reactedRays, norm, n_in, n_out)
        return reactedRays, activeRays, finishedRays, deadRays
Exemplo n.º 11
0
 def phi(self, **opts):
     """
     Azimuth.
     """
     return tf.atan2(tf_non_zero(self.py(**opts), self.epsilon),
                     self.px(**opts))
Exemplo n.º 12
0
    def model(self, features: Dict[str, tf.Tensor],
              labels: Dict[str, tf.Tensor], mode: str) -> tf.Tensor:
        """
        Define your model metrics and architecture, the logic is dependent on the mode.
        :param features: A dictionary of potential inputs for your model
        :param labels: Input label set
        :param mode: Current training mode (train, test, predict)
        :return: An estimator spec used by the higher level API
        """
        # set flag if the model is currently training
        is_training = mode == tf.estimator.ModeKeys.TRAIN

        # initialise model architecture
        seg_output, pos_output, cos_output, sin_output, width_output = self._create_model(
            features['input'], is_training)
        segmentation_classes = tf.argmax(input=seg_output,
                                         axis=3,
                                         output_type=tf.int32)
        # TODO: update model predictions
        predictions = {
            'segmentation': tf.expand_dims(segmentation_classes, -1),
            'segmentation_probabilities': tf.nn.softmax(seg_output),
        }
        #
        if mode == tf.estimator.ModeKeys.PREDICT:
            # TODO: update output during serving
            export_outputs = {
                'segmentation':
                tf.estimator.export.ClassificationOutput(
                    scores=predictions['segmentation_probabilities'],
                    classes=tf.cast(predictions['segmentation'], tf.string))
            }
            return tf.estimator.EstimatorSpec(mode,
                                              predictions=predictions,
                                              export_outputs=export_outputs)

        # calculate loss
        # specify some class weightings
        segmentation_class_weights = tf.constant([1, 5, 1, 5])

        # specify the weights for each sample in the batch (without having to compute the onehot label matrix)
        segmentation_weights = tf.gather(segmentation_class_weights,
                                         labels['seg'])

        seg_loss = tf.losses.sparse_softmax_cross_entropy(
            labels=labels['seg'],
            logits=seg_output,
            weights=segmentation_weights)
        # seg_loss = tf.losses.sparse_softmax_cross_entropy(labels=labels['seg'], logits=seg_output)

        # tf.print(labels['grasps'], output_stream=sys.stdout)
        # print(labels['grasps'])
        # grasp_loss_mask = labels['quality']
        grasp_loss_mask = tf.to_float(
            tf.greater(labels['quality'], tf.zeros_like(labels['quality'])))
        # quality_loss = tf.losses.mean_squared_error(labels=labels['quality'], predictions=pos_output)
        quality_loss = tf.losses.sigmoid_cross_entropy(labels['quality'],
                                                       logits=pos_output)

        sin_loss = tf.losses.mean_squared_error(labels=labels['angle_sin'],
                                                predictions=sin_output,
                                                weights=grasp_loss_mask)
        cos_loss = tf.losses.mean_squared_error(labels=labels['angle_cos'],
                                                predictions=cos_output,
                                                weights=grasp_loss_mask)
        width_loss = tf.losses.mean_squared_error(
            labels=(labels['gripper_width'] / 150.0),
            predictions=width_output,
            weights=grasp_loss_mask)

        angle = 0.5 * tf.atan2(sin_output, cos_output)

        loss = seg_loss + quality_loss + sin_loss + cos_loss + width_loss

        # TODO: update summaries for tensorboard
        segmentations_class_colors = tf.convert_to_tensor(
            [[0, 0, 0], [255, 0, 0], [0, 255, 0], [0, 0, 255]], dtype=tf.uint8)
        segmentation_image = tf.gather(segmentations_class_colors,
                                       segmentation_classes)

        tf.summary.scalar('seg_loss', seg_loss)
        tf.summary.scalar('quality_loss', quality_loss)
        tf.summary.scalar('angle_sin_loss', sin_loss)
        tf.summary.scalar('angle_cos_loss', cos_loss)
        tf.summary.scalar('width_loss', width_loss)
        tf.summary.scalar('loss', loss)

        gaussian_blur_kernel = gaussian_kernel(5, 0.0, 1.0)
        gaussian_blur_kernel = gaussian_blur_kernel[:, :, tf.newaxis,
                                                    tf.newaxis]
        quality = tf.sigmoid(pos_output)
        quality = tf.nn.conv2d(quality, gaussian_blur_kernel, [1, 1, 1, 1],
                               'SAME')

        images = {
            'input': tf.summary.image('input', features['input']),
            'segmentation': tf.summary.image('segmentation',
                                             segmentation_image),
            'quality': tf.summary.image('quality', quality),
            'angle_sin': tf.summary.image('angle_sin', sin_output),
            'angle_cos': tf.summary.image('angle_cos', cos_output),
            'width': tf.summary.image('width', width_output),
            'angle': tf.summary.image('angle', angle)
        }

        # tf.summary.image('segmentation', tf.image.hsv_to_rgb(predictions['segmentation'] / 4.0))
        # tf.summary.image('segmentation', tf.cast(predictions['segmentation'], tf.float32))

        if mode == tf.estimator.ModeKeys.EVAL:
            # TODO: update evaluation metrics
            # output eval images
            # eval_summary_hook = tf.train.SummarySaverHook(summary_op=images, save_secs=120)
            summaries_dict = {
                'val_mean_iou':
                tf.metrics.mean_iou(labels['seg'],
                                    predictions=predictions['segmentation'],
                                    num_classes=4)
            }
            # summaries_dict.update(images)
            # summaries_dict.update(get_estimator_eval_metric_ops)
            b = tf.shape(quality)[0]

            detection_grasps = self._create_detection_head(
                quality, angle, width_output)

            detection_evaluator = OAHODetectionEvaluator()
            detection_visualizer = OAHODetectionVisualizer()
            groundtruth_grasps = tf.reshape(
                tf.sparse_tensor_to_dense(labels['grasps'], -1), (b, -1, 4))
            groundtruth_segmentation_image = tf.gather(
                segmentations_class_colors, tf.squeeze(labels['seg'], -1))

            summaries_dict.update(
                detection_evaluator.get_estimator_eval_metric_ops({
                    'image_id':
                    labels['id'],
                    'groundtruth_grasps':
                    groundtruth_grasps,
                    'detection_grasps':
                    detection_grasps
                }))

            normalized_depth = tf.image.convert_image_dtype(
                features['input'] /
                tf.reduce_max(features['input'], axis=[1, 2], keepdims=True),
                dtype=tf.uint8)
            summaries_dict.update(
                detection_visualizer.get_estimator_eval_metric_ops({
                    'image_id':
                    labels['id'],
                    'depth':
                    normalized_depth,
                    'groundtruth_grasps':
                    groundtruth_grasps,
                    'detection_grasps':
                    detection_grasps,
                    'groundtruth_segmentation':
                    groundtruth_segmentation_image,
                    'detection_segmentation':
                    segmentation_image
                }))
            return tf.estimator.EstimatorSpec(
                mode=mode,
                loss=loss,
                eval_metric_ops=
                summaries_dict  #, evaluation_hooks=[eval_summary_hook]
            )

        # assert only reach this point during training
        assert mode == tf.estimator.ModeKeys.TRAIN

        # create learning rate variable for hyper param tuning
        lr = tf.Variable(initial_value=self.config['learning_rate'],
                         name='learning-rate')

        # TODO: update optimiser
        optimizer = tf.train.AdamOptimizer(lr)

        train_op = optimizer.minimize(
            loss,
            global_step=tf.train.get_global_step(),
            colocate_gradients_with_ops=True,
        )

        return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
rotatedWeightsL = []
for angle in angles:
	rotatedWeightsL.append(cc.transformations.rotateVectorField(flatWeights, angle))

rotatedWeights = tf.stack(rotatedWeightsL, axis=0)
thetas = []
with tf.device('/gpu:0'):
	weightShape = rotatedWeights.get_shape()
	for angle in range(0, num_bins, num_bins//num_angles):
		weightSet = tf.gather(rotatedWeights, angle + offset)
		conv2 = cc.layers.conv_2tf(inpt, weightSet, c_i, c_o, 1, 1, "SAME")
		conv0 = tf.nn.conv2d(inpt, weightSet, [1,1,1,1], "SAME")
		angleMask = tf.logical_and(tf.abs(conv0)<1e-2, tf.abs(conv2)<1e-2)
		conv0 = tf.where(angleMask, tf.zeros_like(conv0), conv0)
		conv2 = tf.where(angleMask, tf.ones_like(conv2), conv2)
		thetas.append(-tf.atan2(conv2, conv0))
	angles2 = tf.concat(angles, axis=0)
	thetas = tf.stack(thetas, axis=-1)
	winner = tf.argmin(tf.abs(thetas), axis=-1, output_type=tf.int32)
	thetas2 = cc.ops.reduceIndex(thetas, winner)
	thetas2, convMask = cc.ops.offsetCorrect(thetas2, [numpy.pi/num_angles])
	# myErrorGPU = tf.reduce_sum(tf.pow(groundTruth - convByIndexCudaRes,1))
	# tfErrorGPU = tf.reduce_sum(tf.pow(groundTruth - flatConvCudaRes,1))
	quantized = tf.cast(tf.round(thetas2*num_bins/(2*numpy.pi)), tf.int32) + tf.cast(winner * (num_bins//num_angles), tf.int32) + offset
	convByIndexCudaRes = cc.ops.convByIndex(inpt, rotatedWeights, quantized, convMask, thetas2, [1,1,1,1], "SAME")
	flatConvCudaResL = []
	for rotation in range(num_bins+1):
		rMask = tf.cast(tf.equal(quantized, rotation), tf.float32)
		flatConvCudaResL.append(tf.nn.conv2d(inpt, rotatedWeightsL[rotation], [1,1,1,1], "SAME")*rMask)
	flatConvCudaRes = tf.reduce_sum(tf.stack(flatConvCudaResL, axis=0), axis=0) * tf.cast(convMask, tf.float32)
	myErrorGPU = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=tf.reduce_sum(convByIndexCudaRes, axis=[0,1,2]), labels=lab)