Exemplo n.º 1
0
  def testMismatchedShapes(self):
    with self.test_session(use_gpu=False):
      sp_zero = ops.SparseTensor([[0, 0]], [0], [1, 1])
      sp_one = ops.SparseTensor([[0]], [1], [2])
      with self.assertRaisesOpError("Operands do not have the same ranks"):
        tf.sparse_maximum(sp_zero, sp_one).eval()

      sp_zero = ops.SparseTensor([[0]], [0], [1])
      sp_one = ops.SparseTensor([[0]], [1], [2])
      with self.assertRaisesOpError("Operands' shapes do not match"):
        tf.sparse_maximum(sp_zero, sp_one).eval()
Exemplo n.º 2
0
  def testMismatchedShapes(self):
    with self.test_session(use_gpu=False):
      sp_zero = ops.SparseTensor([[0, 0]], [0], [1, 1])
      sp_one = ops.SparseTensor([[0]], [1], [2])
      with self.assertRaisesOpError("Operands do not have the same ranks"):
        tf.sparse_maximum(sp_zero, sp_one).eval()

      sp_zero = ops.SparseTensor([[0]], [0], [1])
      sp_one = ops.SparseTensor([[0]], [1], [2])
      with self.assertRaisesOpError("Operands' shapes do not match"):
        tf.sparse_maximum(sp_zero, sp_one).eval()
Exemplo n.º 3
0
    def testRandom(self):
        np.random.seed(1618)
        shapes = [(13, ), (6, 8), (1, 7, 1)]
        for shape in shapes:
            for dtype in [
                    np.int32, np.int64, np.float16, np.float32, np.float64
            ]:
                a_np = np.random.randn(*shape).astype(dtype)
                b_np = np.random.randn(*shape).astype(dtype)
                sp_a, unused_a_nnz = _sparsify(a_np, thresh=-.5)
                sp_b, unused_b_nnz = _sparsify(b_np, thresh=-.5)

                with self.test_session(use_gpu=False):
                    maximum_tf = tf.sparse_maximum(sp_a, sp_b)
                    maximum_tf_densified = tf.sparse_tensor_to_dense(
                        maximum_tf).eval()
                    minimum_tf = tf.sparse_minimum(sp_a, sp_b)
                    minimum_tf_densified = tf.sparse_tensor_to_dense(
                        minimum_tf).eval()

                    a_densified = tf.sparse_tensor_to_dense(sp_a).eval()
                    b_densified = tf.sparse_tensor_to_dense(sp_b).eval()

                self.assertAllEqual(np.maximum(a_densified, b_densified),
                                    maximum_tf_densified)
                self.assertAllEqual(np.minimum(a_densified, b_densified),
                                    minimum_tf_densified)
Exemplo n.º 4
0
  def testBasic(self):
    with self.test_session(use_gpu=False):
      # 1-D, values at index 0.
      sp_zero = ops.SparseTensor([[0]], [0], [7])
      sp_one = ops.SparseTensor([[0]], [1], [7])
      max_tf = tf.sparse_maximum(sp_zero, sp_one).eval()
      min_tf = tf.sparse_minimum(sp_zero, sp_one).eval()
      self._assertSparseTensorValueEqual(sp_one.eval(), max_tf)
      self._assertSparseTensorValueEqual(sp_zero.eval(), min_tf)

      # Values at different indices.
      sp_zero = ops.SparseTensor([[0]], [0], [7])
      sp_zero_2 = ops.SparseTensor([[1]], [0], [7])
      expected = ops.SparseTensor([[0], [1]], [0, 0], [7])
      max_tf = tf.sparse_maximum(sp_zero, sp_zero_2).eval()
      min_tf = tf.sparse_minimum(sp_zero, sp_zero_2).eval()
      self._assertSparseTensorValueEqual(expected.eval(), max_tf)
      self._assertSparseTensorValueEqual(expected.eval(), min_tf)
Exemplo n.º 5
0
  def testBasic(self):
    with self.test_session(use_gpu=False):
      # 1-D, values at index 0.
      sp_zero = ops.SparseTensor([[0]], [0], [7])
      sp_one = ops.SparseTensor([[0]], [1], [7])
      max_tf = tf.sparse_maximum(sp_zero, sp_one).eval()
      min_tf = tf.sparse_minimum(sp_zero, sp_one).eval()
      self._assertSparseTensorValueEqual(sp_one.eval(), max_tf)
      self._assertSparseTensorValueEqual(sp_zero.eval(), min_tf)

      # Values at different indices.
      sp_zero = ops.SparseTensor([[0]], [0], [7])
      sp_zero_2 = ops.SparseTensor([[1]], [0], [7])
      expected = ops.SparseTensor([[0], [1]], [0, 0], [7])
      max_tf = tf.sparse_maximum(sp_zero, sp_zero_2).eval()
      min_tf = tf.sparse_minimum(sp_zero, sp_zero_2).eval()
      self._assertSparseTensorValueEqual(expected.eval(), max_tf)
      self._assertSparseTensorValueEqual(expected.eval(), min_tf)
Exemplo n.º 6
0
    def testRandom(self):
        np.random.seed(1618)
        shapes = [(13,), (6, 8), (1, 7, 1)]
        for shape in shapes:
            for dtype in [np.int32, np.int64, np.float16, np.float32, np.float64]:
                a_np = np.random.randn(*shape).astype(dtype)
                b_np = np.random.randn(*shape).astype(dtype)
                sp_a, unused_a_nnz = _sparsify(a_np, thresh=-0.5)
                sp_b, unused_b_nnz = _sparsify(b_np, thresh=-0.5)

                with self.test_session(use_gpu=False):
                    maximum_tf = tf.sparse_maximum(sp_a, sp_b)
                    maximum_tf_densified = tf.sparse_tensor_to_dense(maximum_tf).eval()
                    minimum_tf = tf.sparse_minimum(sp_a, sp_b)
                    minimum_tf_densified = tf.sparse_tensor_to_dense(minimum_tf).eval()

                    a_densified = tf.sparse_tensor_to_dense(sp_a).eval()
                    b_densified = tf.sparse_tensor_to_dense(sp_b).eval()

                self.assertAllEqual(np.maximum(a_densified, b_densified), maximum_tf_densified)
                self.assertAllEqual(np.minimum(a_densified, b_densified), minimum_tf_densified)
Exemplo n.º 7
0
tf.trace()
tf.trainable_variables()
tf.transpose()
tf.truncated_normal()
tf.truediv()
tf.sparse_transpose()
tf.sparse_tensor_dense_matmul()
tf.sparse_accumulator_apply_gradient()
tf.sparse_accumulator_take_gradient()
tf.sparse_add()
tf.sparse_concat()
tf.sparse_conditional_accumulator()
tf.sparse_mask()
tf.sparse_matmul()
tf.sparse_maximum()
tf.sparse_merge()
tf.sparse_minimum()

tf.sparse_reduce_max()
tf.sparse_reduce_max_sparse()

tf.reduce_all()
tf.reduce_any()
tf.reduce_join()
tf.reduce_logsumexp()
tf.reduce_max()
tf.reduce_mean()
tf.reduce_min()
tf.reduce_prod()
tf.reduce_sum()