Exemplo n.º 1
0
def test_save_model(tmpdir):
    model = tf.keras.models.Sequential([
        tf.keras.layers.Input((256, 256, 3)),
        tf.keras.layers.Dense(6, activation="softmax"),
    ])
    model.compile(optimizer="adam", loss=WeightedKappaLoss(num_classes=6))
    model.save(str(tmpdir / "test.h5"))
Exemplo n.º 2
0
def test_linear_weighted_kappa_loss(np_seed):
    y_true, y_pred = gen_labels_and_preds(50, 4, np_seed)
    kappa_loss = WeightedKappaLoss(num_classes=4, weightage="linear")
    y_pred = y_pred.astype(np.float32)
    loss = kappa_loss(y_true, y_pred)
    loss_np = weighted_kappa_loss_np(y_true, y_pred, weightage="linear")
    np.testing.assert_allclose(loss, loss_np, rtol=1e-5, atol=1e-5)
Exemplo n.º 3
0
def test_quadratic_weighted_kappa_loss(np_seed):
    y_true, y_pred = gen_labels_and_preds(100, 3, np_seed)
    kappa_loss = WeightedKappaLoss(num_classes=3)
    y_pred = y_pred.astype(np.float32)
    loss = kappa_loss(y_true, y_pred)
    loss_np = weighted_kappa_loss_np(y_true, y_pred)
    np.testing.assert_allclose(loss, loss_np, rtol=1e-5, atol=1e-5)
Exemplo n.º 4
0
def test_config():
    kappa_loss = WeightedKappaLoss(num_classes=4,
                                   weightage="linear",
                                   name="kappa_loss",
                                   epsilon=0.001)
    assert kappa_loss.num_classes == 4
    assert kappa_loss.weightage == "linear"
    assert kappa_loss.name == "kappa_loss"
    np.testing.assert_allclose(kappa_loss.epsilon, 0.001, 1e-6)
Exemplo n.º 5
0
def test_serialization():
    loss = WeightedKappaLoss(num_classes=3)
    tf.keras.losses.deserialize(tf.keras.losses.serialize(loss))