Exemplo n.º 1
0
 def test_sample_weighted(self):
     pin_obj = quantiles.PinballLoss()
     y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
     y_pred = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.dtypes.float32)
     sample_weight = tf.constant([1.2, 3.4], shape=(2, 1))
     loss = pin_obj(y_true, y_pred, sample_weight=sample_weight)
     self.assertAlmostEqual(self.evaluate(loss), 40.7 / 6, 3)
Exemplo n.º 2
0
def test_timestep_weighted():
    pin_obj = quantiles.PinballLoss()
    y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
    y_pred = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1), dtype=tf.dtypes.float32)
    sample_weight = tf.constant([3, 6, 5, 0, 4, 2], shape=(2, 3))
    loss = pin_obj(y_true, y_pred, sample_weight=sample_weight)
    np.testing.assert_almost_equal(loss, 41.5 / 6, 3)
Exemplo n.º 3
0
def test_invalid_sample_weight():
    pin_obj = quantiles.PinballLoss()
    y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
    y_pred = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1))
    sample_weight = tf.constant([3, 6, 5, 0], shape=(2, 2))
    with pytest.raises(tf.errors.InvalidArgumentError, match="Incompatible shapes"):
        pin_obj(y_true, y_pred, sample_weight=sample_weight)
Exemplo n.º 4
0
 def test_invalid_sample_weight(self):
     pin_obj = quantiles.PinballLoss()
     y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
     y_pred = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1))
     sample_weight = tf.constant([3, 6, 5, 0], shape=(2, 2))
     with self.assertRaisesRegexp(ValueError,
                                  "weights can not be broadcast to values"):
         pin_obj(y_true, y_pred, sample_weight=sample_weight)
def test_sum_reduction():
    pin_obj = quantiles.PinballLoss(reduction=tf.keras.losses.Reduction.SUM)
    y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
    y_pred = tf.constant([4, 8, 12, 8, 1, 3],
                         shape=(2, 3),
                         dtype=tf.dtypes.float32)
    loss = pin_obj(y_true, y_pred, sample_weight=2.3)
    np.testing.assert_almost_equal(loss, 12.65, 3)
def test_zero_weighted():
    pin_obj = quantiles.PinballLoss()
    y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
    y_pred = tf.constant([4, 8, 12, 8, 1, 3],
                         shape=(2, 3),
                         dtype=tf.dtypes.float32)
    loss = pin_obj(y_true, y_pred, sample_weight=0)
    np.testing.assert_almost_equal(loss, 0.0, 3)
Exemplo n.º 7
0
 def test_unweighted_quantile_100pc(self):
     pin_obj = quantiles.PinballLoss(tau=1.0)
     y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
     y_pred = tf.constant([4, 8, 12, 8, 1, 3],
                          shape=(2, 3),
                          dtype=tf.dtypes.float32)
     loss = pin_obj(y_true, y_pred)
     self.assertAlmostEqual(self.evaluate(loss), 0.6666, 3)
def test_unweighted_quantile_100pc():
    pin_obj = quantiles.PinballLoss(tau=1.0)
    y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
    y_pred = tf.constant([4, 8, 12, 8, 1, 3],
                         shape=(2, 3),
                         dtype=tf.dtypes.float32)
    loss = pin_obj(y_true, y_pred)
    np.testing.assert_almost_equal(loss, 0.6666, 3)
Exemplo n.º 9
0
 def test_sum_reduction(self):
     pin_obj = quantiles.PinballLoss(
         reduction=tf.keras.losses.Reduction.SUM)
     y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
     y_pred = tf.constant([4, 8, 12, 8, 1, 3],
                          shape=(2, 3),
                          dtype=tf.dtypes.float32)
     loss = pin_obj(y_true, y_pred, sample_weight=2.3)
     self.assertAlmostEqual(self.evaluate(loss), 12.65, 3)
Exemplo n.º 10
0
 def test_invalid_sample_weight(self):
     self.skipTest("Failing. See https://github.com/tensorflow/addons/issues/1202")
     pin_obj = quantiles.PinballLoss()
     y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
     y_pred = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1))
     sample_weight = tf.constant([3, 6, 5, 0], shape=(2, 2))
     with self.assertRaisesRegexp(
         ValueError, "weights can not be broadcast to values"
     ):
         pin_obj(y_true, y_pred, sample_weight=sample_weight)
Exemplo n.º 11
0
 def test_no_reduction(self):
     pin_obj = quantiles.PinballLoss(
         reduction=tf.keras.losses.Reduction.NONE)
     y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
     y_pred = tf.constant([4, 8, 12, 8, 1, 3],
                          shape=(2, 3),
                          dtype=tf.dtypes.float32)
     loss = pin_obj(y_true, y_pred, sample_weight=2.3)
     loss = self.evaluate(loss)
     self.assertArrayNear(loss, [5.3666, 7.28333], 1e-3)
Exemplo n.º 12
0
 def test_timestep_weighted(self):
     self.skipTest("Failing. See https://github.com/tensorflow/addons/issues/1202")
     pin_obj = quantiles.PinballLoss()
     y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
     y_pred = tf.constant(
         [4, 8, 12, 8, 1, 3], shape=(2, 3, 1), dtype=tf.dtypes.float32
     )
     sample_weight = tf.constant([3, 6, 5, 0, 4, 2], shape=(2, 3))
     loss = pin_obj(y_true, y_pred, sample_weight=sample_weight)
     self.assertAlmostEqual(self.evaluate(loss), 41.5 / 6, 3)
Exemplo n.º 13
0
def test_timestep_weighted():
    pytest.skip(
        "Failing. See https://github.com/tensorflow/addons/issues/1202")
    pin_obj = quantiles.PinballLoss()
    y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
    y_pred = tf.constant([4, 8, 12, 8, 1, 3],
                         shape=(2, 3, 1),
                         dtype=tf.dtypes.float32)
    sample_weight = tf.constant([3, 6, 5, 0, 4, 2], shape=(2, 3))
    loss = pin_obj(y_true, y_pred, sample_weight=sample_weight)
    np.testing.assert_almost_equal(loss, 41.5 / 6, 3)
Exemplo n.º 14
0
def test_invalid_sample_weight():
    pin_obj = quantiles.PinballLoss()
    y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
    y_pred = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1))
    sample_weight = tf.constant([3, 6, 5, 0], shape=(2, 2))
    if LooseVersion(tf.__version__) >= "2.2":
        with pytest.raises(tf.errors.InvalidArgumentError,
                           match="Incompatible shapes"):
            pin_obj(y_true, y_pred, sample_weight=sample_weight)
    else:
        with pytest.raises(ValueError,
                           match="weights can not be broadcast to values"):
            pin_obj(y_true, y_pred, sample_weight=sample_weight)
Exemplo n.º 15
0
def test_all_correct_unweighted():
    pin_obj = quantiles.PinballLoss()
    y_true = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3))
    loss = pin_obj(y_true, y_true)
    assert loss == 0
Exemplo n.º 16
0
def test_config():
    pin_obj = quantiles.PinballLoss(
        reduction=tf.keras.losses.Reduction.SUM, name="pin_1"
    )
    assert pin_obj.name == "pin_1"
    assert pin_obj.reduction == tf.keras.losses.Reduction.SUM
Exemplo n.º 17
0
 def test_config(self):
     pin_obj = quantiles.PinballLoss(
         reduction=tf.keras.losses.Reduction.SUM, name="pin_1")
     self.assertEqual(pin_obj.name, "pin_1")
     self.assertEqual(pin_obj.reduction, tf.keras.losses.Reduction.SUM)
Exemplo n.º 18
0
 def test_all_correct_unweighted(self):
     pin_obj = quantiles.PinballLoss()
     y_true = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3))
     loss = pin_obj(y_true, y_true)
     self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)