Exemplo n.º 1
0
def test_streaming_transducer():
    config = Config(DEFAULT_YAML, learning=False)

    text_featurizer = CharFeaturizer(config.decoder_config)

    speech_featurizer = TFSpeechFeaturizer(config.speech_config)

    model = StreamingTransducer(vocabulary_size=text_featurizer.num_classes,
                                **config.model_config)

    model._build(speech_featurizer.shape)
    model.summary(line_length=150)

    model.add_featurizers(speech_featurizer=speech_featurizer,
                          text_featurizer=text_featurizer)

    concrete_func = model.make_tflite_function(
        timestamp=False).get_concrete_function()
    converter = tf.lite.TFLiteConverter.from_concrete_functions(
        [concrete_func])
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    converter.experimental_new_converter = True
    converter.target_spec.supported_ops = [
        tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
    ]
    converter.convert()

    print("Converted successfully with no timestamp")

    concrete_func = model.make_tflite_function(
        timestamp=True).get_concrete_function()
    converter = tf.lite.TFLiteConverter.from_concrete_functions(
        [concrete_func])
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    converter.experimental_new_converter = True
    converter.target_spec.supported_ops = [
        tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
    ]
    converter.convert()

    print("Converted successfully with timestamp")
Exemplo n.º 2
0
args = parser.parse_args()

assert args.saved and args.output

config = UserConfig(DEFAULT_YAML, args.config, learning=True)
speech_featurizer = TFSpeechFeaturizer(config["speech_config"])
text_featurizer = CharFeaturizer(config["decoder_config"])

# build model
streaming_transducer = StreamingTransducer(
    **config["model_config"],
    vocabulary_size=text_featurizer.num_classes
)
streaming_transducer._build(speech_featurizer.shape)
streaming_transducer.load_weights(args.saved)
streaming_transducer.summary(line_length=150)
streaming_transducer.add_featurizers(speech_featurizer, text_featurizer)

concrete_func = streaming_transducer.make_tflite_function(greedy=True).get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,
                                       tf.lite.OpsSet.SELECT_TF_OPS]
tflite_model = converter.convert()

if not os.path.exists(os.path.dirname(args.output)):
    os.makedirs(os.path.dirname(args.output))
with open(args.output, "wb") as tflite_out:
    tflite_out.write(tflite_model)
Exemplo n.º 3
0
#
# print(hyps[0])
#
# # hyps = model.recognize_beam(features)
#
#

# hyps = model.recognize_beam(tf.expand_dims(speech_featurizer.tf_extract(signal), 0))

# print(hyps)

# hyps = model.recognize_beam_tflite(signal)

# print(hyps.numpy().decode("utf-8"))

concrete_func = model.make_tflite_function(greedy=True).get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.experimental_new_converter = True
converter.target_spec.supported_ops = [
    tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
]
tflite = converter.convert()

tflitemodel = tf.lite.Interpreter(model_content=tflite)

input_details = tflitemodel.get_input_details()
output_details = tflitemodel.get_output_details()
tflitemodel.resize_tensor_input(input_details[0]["index"], signal.shape)
tflitemodel.allocate_tensors()
tflitemodel.set_tensor(input_details[0]["index"], signal)
Exemplo n.º 4
0
def test_streaming_transducer():
    config = Config(DEFAULT_YAML, learning=False)

    text_featurizer = CharFeaturizer(config.decoder_config)

    speech_featurizer = TFSpeechFeaturizer(config.speech_config)

    model = StreamingTransducer(vocabulary_size=text_featurizer.num_classes, **config.model_config)

    model._build(speech_featurizer.shape)
    model.summary(line_length=150)

    model.add_featurizers(speech_featurizer=speech_featurizer, text_featurizer=text_featurizer)

    concrete_func = model.make_tflite_function(timestamp=False).get_concrete_function()
    converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    converter.experimental_new_converter = True
    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
    tflite_model = converter.convert()

    print("Converted successfully with no timestamp")

    concrete_func = model.make_tflite_function(timestamp=True).get_concrete_function()
    converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    converter.experimental_new_converter = True
    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
    converter.convert()

    print("Converted successfully with timestamp")

    tflitemodel = tf.lite.Interpreter(model_content=tflite_model)
    signal = tf.random.normal([4000])

    input_details = tflitemodel.get_input_details()
    output_details = tflitemodel.get_output_details()
    tflitemodel.resize_tensor_input(input_details[0]["index"], signal.shape)
    tflitemodel.allocate_tensors()
    tflitemodel.set_tensor(input_details[0]["index"], signal)
    tflitemodel.set_tensor(
        input_details[1]["index"],
        tf.constant(text_featurizer.blank, dtype=tf.int32)
    )
    tflitemodel.set_tensor(
        input_details[2]["index"],
        tf.zeros(
            [config.model_config["encoder_nlayers"], 2, 1, config.model_config["encoder_rnn_units"]],
            dtype=tf.float32
        )
    )
    tflitemodel.set_tensor(
        input_details[3]["index"],
        tf.zeros(
            [config.model_config["prediction_num_rnns"], 2, 1, config.model_config["prediction_rnn_units"]],
            dtype=tf.float32
        )
    )
    tflitemodel.invoke()
    hyp = tflitemodel.get_tensor(output_details[0]["index"])

    print(hyp)