Exemplo n.º 1
0
 def save_weights(
     self,
     filepath,
     overwrite=True,
     save_format=None,
     options=None,
 ):
     with file_util.save_file(filepath) as path:
         super().save_weights(filepath=path, overwrite=overwrite, save_format=save_format, options=options)
Exemplo n.º 2
0
 def save(
     self,
     filepath,
     overwrite=True,
     include_optimizer=True,
     save_format=None,
     signatures=None,
     options=None,
     save_traces=True,
 ):
     with file_util.save_file(filepath) as path:
         super().save(
             filepath=path,
             overwrite=overwrite,
             include_optimizer=include_optimizer,
             save_format=save_format,
             signatures=signatures,
             options=options,
             save_traces=save_traces,
         )
Exemplo n.º 3
0
def run_testing(
    model: BaseModel,
    test_dataset: ASRSliceDataset,
    test_data_loader: tf.data.Dataset,
    output: str,
):
    with file_util.save_file(file_util.preprocess_paths(output)) as filepath:
        overwrite = True
        if tf.io.gfile.exists(filepath):
            overwrite = input(f"Overwrite existing result file {filepath} ? (y/n): ").lower() == "y"
        if overwrite:
            results = model.predict(test_data_loader, verbose=1)
            logger.info(f"Saving result to {output} ...")
            with open(filepath, "w") as openfile:
                openfile.write("PATH\tDURATION\tGROUNDTRUTH\tGREEDY\tBEAMSEARCH\n")
                progbar = tqdm(total=test_dataset.total_steps, unit="batch")
                for i, pred in enumerate(results):
                    groundtruth, greedy, beamsearch = [x.decode("utf-8") for x in pred]
                    path, duration, _ = test_dataset.entries[i]
                    openfile.write(f"{path}\t{duration}\t{groundtruth}\t{greedy}\t{beamsearch}\n")
                    progbar.update(1)
                progbar.close()
        app_util.evaluate_results(filepath)
Exemplo n.º 4
0
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer,
        **vars(config.learning_config.test_dataset_config))

# build model
jasper = Jasper(**config.model_config,
                vocabulary_size=text_featurizer.num_classes)
jasper.make(speech_featurizer.shape)
jasper.load_weights(args.saved)
jasper.summary(line_length=100)
jasper.add_featurizers(speech_featurizer, text_featurizer)

batch_size = args.bs or config.learning_config.running_config.batch_size
test_data_loader = test_dataset.create(batch_size)

with file_util.save_file(file_util.preprocess_paths(args.output)) as filepath:
    overwrite = True
    if tf.io.gfile.exists(filepath):
        overwrite = input(
            f"Overwrite existing result file {filepath} ? (y/n): ").lower(
            ) == "y"
    if overwrite:
        results = jasper.predict(test_data_loader, verbose=1)
        print(f"Saving result to {args.output} ...")
        with open(filepath, "w") as openfile:
            openfile.write("PATH\tDURATION\tGROUNDTRUTH\tGREEDY\tBEAMSEARCH\n")
            progbar = tqdm(total=test_dataset.total_steps, unit="batch")
            for i, pred in enumerate(results):
                groundtruth, greedy, beamsearch = [
                    x.decode('utf-8') for x in pred
                ]