Exemplo n.º 1
0
def create_model():
    units = 512
    middle_units = 256
    dropout_value = 0.3
    activation_function = 'softmax'
    loss_function = 'categorical_crossentropy'
    optimizer = 'rmsprop'
    model = Sequential()
    model.add(
        LSTM(units,
             input_shape=(network_input.shape[1], network_input.shape[2]),
             recurrent_dropout=dropout_value,
             return_sequences=True))
    model.add(
        LSTM(
            units,
            return_sequences=True,
            recurrent_dropout=dropout_value,
        ))
    model.add(LSTM(units))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_value))
    model.add(Dense(middle_units))
    model.add(Activation('relu'))
    model.add(Dropout(dropout_value))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_value))
    model.add(Dense(vocab_size))
    model.add(Activation(activation_function))
    model.compile(loss=loss_function, optimizer=optimizer)
    return model
Exemplo n.º 2
0
def modelStandard(input_shape, parameter=None):
    # define LSTM
    model = Sequential()
    model.add(
        TimeDistributed(Conv2D(16, (2, 2), activation='relu'),
                        input_shape=input_shape))
    model.add(Dropout(parameter['dropout']))
    model.add(BatchNormalization())
    model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2)))
    model.add(Dropout(parameter['dropout']))
    model.add(TimeDistributed(Flatten()))
    model.add(LSTM(parameter['cell1']))
    # model.add(Dropout(0.25))
    model.add(BatchNormalization())

    model.add(RepeatVector(8))
    model.add(LSTM(parameter['cell2'], return_sequences=True))
    # model.add(Dropout(0.25))
    model.add(BatchNormalization())
    model.add(TimeDistributed(Dense(5, activation='softmax')))

    # Replicates `model` on 8 GPUs.
    # This assumes that your machine has 8 available GPUs.
    #parallel_model = multi_gpu_model(model, gpus=2)
    #parallel_model.compile(loss='categorical_crossentropy',
    #                       optimizer='adam', metrics=['accuracy'])

    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Exemplo n.º 3
0
def modelC(row, col):
    # define LSTM
    model = Sequential()
    model.add(
        TimeDistributed(Conv2D(16, (2, 2), activation='relu'),
                        input_shape=(None, row, col, 1)))
    model.add(Dropout(0.25))
    model.add(BatchNormalization())
    model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))
    model.add(Dropout(0.25))
    model.add(TimeDistributed(Flatten()))
    model.add(LSTM(75))
    # model.add(Dropout(0.25))
    model.add(BatchNormalization())

    model.add(RepeatVector(4))
    model.add(LSTM(50, return_sequences=True))
    # model.add(Dropout(0.25))
    model.add(BatchNormalization())
    model.add(TimeDistributed(Dense(4, activation='softmax')))

    # Replicates `model` on 8 GPUs.
    # This assumes that your machine has 8 available GPUs.
    # parallel_model = multi_gpu_model(model, gpus=[2])
    # parallel_model.compile(loss='categorical_crossentropy',
    #                       optimizer='adam', metrics=['accuracy'])

    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Exemplo n.º 4
0
def modelB(row, col, parameter=None):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    '''    x = TimeDistributed(Conv2D(16, (2, 2)))(input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dropout(0.25)(x)
    '''
    # tower_1 = TimeDistributed(Conv2D(16, (1, 1), padding='same', activation='relu'))(input)
    # tower_1 = TimeDistributed(Conv2D(16, (3, 3), padding='same', activation='relu'))(tower_1)

    tower_2 = TimeDistributed(Conv2D(16, (1, 1), padding='same'))(input)
    x = BatchNormalization()(tower_2)
    x = Activation('relu')(x)
    x = Dropout(0.25)(x)
    tower_2 = TimeDistributed(Conv2D(16, (5, 5), padding='same'))(x)
    x = BatchNormalization()(tower_2)
    x = Activation('relu')(x)
    tower_2 = Dropout(0.25)(x)

    tower_3 = TimeDistributed(
        MaxPooling2D((3, 3), strides=(1, 1), padding='same'))(input)
    tower_3 = TimeDistributed(Conv2D(16, (1, 1), padding='same'))(tower_3)
    x = BatchNormalization()(tower_3)
    x = Activation('relu')(x)
    tower_3 = Dropout(0.25)(x)
    concatenate_output = concatenate([tower_2, tower_3], axis=-1)

    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2),
                                     strides=2))(concatenate_output)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    # convLstm = ConvLSTM2D(filters=40, kernel_size=(3, 3),padding='same', return_sequences=False)(x)
    lstm_output = LSTM(75)(x)
    lstm_output = BatchNormalization()(lstm_output)
    # lstm_output = BatchNormalization()(convLstm)
    # auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_output)
    # auxiliary_input = Input(shape=(4,), name='aux_input')
    # x = concatenate([lstm_output, auxiliary_input])

    x = RepeatVector(4)(lstm_output)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Exemplo n.º 5
0
def ModelShare():
    tweet_a = Input(shape=(280, 256))
    tweet_b = Input(shape=(280, 256))

    # This layer can take as input a matrix
    # and will return a vector of size 64
    shared_lstm = LSTM(64, return_sequences=True, name='lstm')

    # When we reuse the same layer instance
    # multiple times, the weights of the layer
    # are also being reused
    # (it is effectively *the same* layer)
    encoded_a = shared_lstm(tweet_a)
    encoded_b = shared_lstm(tweet_b)

    # We can then concatenate the two vectors:
    merged_vector = concatenate([encoded_a, encoded_b], axis=-1)

    # And add a logistic regression on top
    predictions = Dense(1, activation='sigmoid')(merged_vector)

    # We define a trainable model linking the
    # tweet inputs to the predictions
    model = Model(inputs=[tweet_a, tweet_b], outputs=predictions)

    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model
Exemplo n.º 6
0
def modelDemoStandardConvLSTMInception(input_shape, parameter=None):
    # define LSTM
    input = Input(shape=input_shape, name='main_input')

    I_1 = TimeDistributed(Conv2D(16, (1, 1),
                                 activation='relu',
                                 padding='same',
                                 name='C_1'),
                          name='I_11')(input)
    I_1 = TimeDistributed(Conv2D(16, (5, 5),
                                 activation='relu',
                                 padding='same',
                                 name='C_2'),
                          name='I_12')(I_1)

    I_2 = TimeDistributed(MaxPooling2D((3, 3),
                                       strides=(1, 1),
                                       padding='same',
                                       name='C_3'),
                          name='I_21')(input)
    I_2 = TimeDistributed(Conv2D(16, (1, 1),
                                 activation='relu',
                                 padding='same',
                                 name='C_4'),
                          name='I_22')(I_2)

    concatenate_output = concatenate([I_1, I_2], axis=-1)

    # x = TimeDistributed(Flatten())(x)
    x = ConvLSTM2D(filters=32,
                   kernel_size=(3, 3),
                   padding='same',
                   return_sequences=False)(concatenate_output)
    #x = MaxPooling2D((3, 3), strides=(1, 1), padding='same', name='M_1')(x)

    x = (Flatten())(x)

    x = RepeatVector(8)(x)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(8, activation='softmax'),
                             name='main_output')(x)
    #with tensorflow.device('/cpu'):
    model = Model(inputs=[input], outputs=[output])
    # compile the model with gpu

    #parallel_model = multi_gpu_model(model, gpus=2)
    #parallel_model.compile(loss={'main_output': 'categorical_crossentropy'},
    #              loss_weights={'main_output': 1.}, optimizer='adam', metrics=['accuracy'])
    #model = multi_gpu(model, gpus=[1, 2])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Exemplo n.º 7
0
def modelDemoStandard(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input)

    x = TimeDistributed(Flatten())(x)
    lstm_output = LSTM(75)(x)

    x = RepeatVector(4)(lstm_output)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Exemplo n.º 8
0
def create_model():
    # # ENCODER DECODER
    # encoder_inputs = Input(shape=(128, 3))
    # # masked_encoder_inputs = Masking()(encoder_inputs)
    # masked_encoder_inputs = encoder_inputs
    # encoder_lstm = Bidirectional(LSTM(500, return_state=True))
    #
    # # We discard `encoder_outputs` and only keep the states.
    # _, forward_h, forward_c, backward_h, backward_c = encoder_lstm(masked_encoder_inputs)
    # state_c = Concatenate()([forward_c, backward_c])
    # state_h = Concatenate()([forward_h, backward_h])
    # encoder_states = [state_h, state_c]
    #
    # # Bottleneck Here
    #
    # decoder_inputs = Input(shape=(128, 3))
    # # masked_decoder_inputs = Masking()(decoder_inputs)
    # masked_decoder_inputs = decoder_inputs
    # decoder_lstm = LSTM(1000, return_state=True, return_sequences=True)
    # decoder_outputs, _, _ = decoder_lstm(masked_decoder_inputs, initial_state=encoder_states)
    #
    # outputs = TimeDistributed(Dense(2, activation=capped_relu))(decoder_outputs)
    #
    # model = Model([encoder_inputs, decoder_inputs], outputs)

    # SEQUENTIAL
    model = models.Sequential([
        Input((128, 3)),
        Bidirectional(LSTM(500, return_sequences=True)),
        Bidirectional(LSTM(500, return_sequences=True)),
        TimeDistributed(Dense(2, activation=capped_relu))
    ])

    model.compile(optimizer=optimizers.Adam(learning_rate=0.0001),
                  loss=losses.MeanAbsoluteError(),
                  metrics=["accuracy"])

    print(model.summary())

    return model
Exemplo n.º 9
0
def modelA(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input)
    x = Dropout(0.25)(x)
    x = BatchNormalization()(x)
    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2))(x)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    lstm_output = LSTM(75)(x)
    lstm_output = BatchNormalization()(lstm_output)

    auxiliary_output = Dense(1, activation='sigmoid',
                             name='aux_output')(lstm_output)
    auxiliary_input = Input(shape=(4, ), name='aux_input')
    x = concatenate([lstm_output, auxiliary_input])

    x = RepeatVector(8)(x)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(5, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input, auxiliary_input],
                  outputs=[output, auxiliary_output])
    model.compile(loss={
        'main_output': 'categorical_crossentropy',
        'aux_output': 'binary_crossentropy'
    },
                  loss_weights={
                      'main_output': 1.,
                      'aux_output': 0.2
                  },
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Exemplo n.º 10
0
def modelStandardB(row, col):
    # define LSTM
    input_img = Input(shape=(None, row, col, 1), name='input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input_img)
    x = Dropout(0.25)(x)
    x = BatchNormalization()(x)
    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2))(x)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    x = LSTM(75)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)

    x = RepeatVector(4)(x)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(4, activation='softmax'))(x)

    model = Model(input_img, output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Exemplo n.º 11
0
    def modelMasking(self, code_layer_type, input_dim, code_dim):

        self.code_layer_type = code_layer_type
        assert len(code_dim) > 0

        if self.code_layer_type == 'lstm':
            assert len(input_dim) == 2
            input_data = Input(shape=(input_dim[0], input_dim[1]))
            mask = Masking(mask_value=0.)(input_data)
            if len(code_dim) == 1:
                encoded = LSTM(code_dim[0])(mask)
                decoded = RepeatVector(input_dim[0])(encoded)
            elif len(code_dim) > 1:
                encoded = mask
                for i, units in enumerate(code_dim):
                    if i == len(code_dim) - 1:
                        encoded = LSTM(units)(encoded)
                        continue
                    encoded = LSTM(units, return_sequences=True)(encoded)

                for i, units in enumerate(reversed(code_dim)):
                    if i == 1:
                        decoded = LSTM(units, return_sequences=True)(
                            RepeatVector(input_dim[0])(encoded))
                    elif i > 1:
                        decoded = LSTM(units, return_sequences=True)(decoded)
            else:
                raise ValueError("The codDim must be over 0.")

            decoded = LSTM(input_dim[-1], return_sequences=True)(decoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'cov':
            pass
        elif self.code_layer_type == 'dense':
            assert len(input_dim) == 1
            input_data = Input(shape=(input_dim[0], ))
            # encoded = input_data
            # for i, units in enumerate(codeDim):
            # 	encoded = Dense(units, activation='relu')(encoded)
            # decoded = Dense(inputDim[-1], activation='sigmoid')(encoded)
            # self.model = Model(input_data, decoded)
            encoder = Dense(
                code_dim[0],
                activation="tanh",
                activity_regularizer=regularizers.l1(10e-5))(input_data)
            encoder = Dense(int(code_dim[0] / 2), activation="relu")(encoder)
            decoder = Dense(int(code_dim[0] / 2), activation='tanh')(encoder)
            decoder = Dense(input_dim[0], activation='relu')(decoder)
            self.model = Model(input_data, decoder)
Exemplo n.º 12
0
def ModelVisualQuestionAnswering():
    # First, let's define a vision model using a Sequential model.
    # This model will encode an image into a vector.
    vision_model = Sequential()
    vision_model.add(
        Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               input_shape=(224, 224, 3)))
    vision_model.add(Conv2D(64, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(128, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Flatten())

    # Now let's get a tensor with the output of our vision model:
    image_input = Input(shape=(224, 224, 3))
    encoded_image = vision_model(image_input)

    # Next, let's define a language model to encode the question into a vector.
    # Each question will be at most 100 words long,
    # and we will index words as integers from 1 to 9999.
    question_input = Input(shape=(100, ), dtype='int32')
    embedded_question = Embedding(input_dim=10000,
                                  output_dim=256,
                                  input_length=100)(question_input)
    encoded_question = LSTM(256)(embedded_question)

    # Let's concatenate the question vector and the image vector:
    merged = concatenate([encoded_question, encoded_image])

    # And let's train a logistic regression over 1000 words on top:
    output = Dense(1000, activation='softmax')(merged)

    # This is our final model:
    vqa_model = Model(inputs=[image_input, question_input], outputs=output)
    return vqa_model
Exemplo n.º 13
0
def get_model(X, N_class, total_words=86627, EMBEDDING_DIM=100, maxlen=53):

    embeddings_index = {}

    f = open('glove.6B/glove.6B.100d.txt')
    for line in f:
        values = line.split()
        word = values[0]
        coefs = np.asarray(values[1:], dtype='float32')
        embeddings_index[word] = coefs
    f.close()

    embedding_matrix = np.zeros((total_words, EMBEDDING_DIM))
    for word, i in X.items():
        embedding_vector = embeddings_index.get(word)
        if embedding_vector is not None:
            embedding_matrix[i] = embedding_vector

    inp = Input(shape=(maxlen, ), dtype='int32')
    embedding = Embedding(total_words,
                          EMBEDDING_DIM,
                          embeddings_initializer=Constant(embedding_matrix),
                          input_length=maxlen,
                          trainable=False)(inp)
    x = LSTM(300, dropout=0.25, recurrent_dropout=0.25,
             return_sequences=True)(embedding)
    x = Dropout(0.25)(x)
    merged = Attention_COSTUM(maxlen)(x)
    merged = Dense(256, activation='relu')(merged)
    merged = Dropout(0.25)(merged)
    merged = BatchNormalization()(merged)
    outp = Dense(N_class, activation='softmax')(merged)

    AttentionLSTM = Model(inputs=inp, outputs=outp)
    AttentionLSTM.compile(loss='sparse_categorical_crossentropy',
                          optimizer='adam',
                          metrics=['acc'])

    return AttentionLSTM
Exemplo n.º 14
0
def modelDemoStandardConvLSTM(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    # x = TimeDistributed(Flatten())(x)
    x = ConvLSTM2D(filters=75,
                   kernel_size=(3, 3),
                   padding='same',
                   return_sequences=False)(input)
    x = (Flatten())(x)

    x = RepeatVector(4)(x)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Exemplo n.º 15
0
    def model(self, code_layer_type, input_dim, code_dim):
        self.code_layer_type = code_layer_type
        assert len(code_dim) > 0

        if self.code_layer_type == 'lstm':
            assert len(input_dim) == 2
            input_data = Input(shape=(input_dim[0], input_dim[1]))

            if len(code_dim) == 1:
                encoded = LSTM(code_dim[0])(input_data)
                decoded = RepeatVector(input_dim[0])(encoded)
            elif len(code_dim) > 1:
                encoded = input_data
                for i, units in enumerate(code_dim):
                    if i == len(code_dim) - 1:
                        encoded = LSTM(units)(encoded)
                        continue
                    encoded = LSTM(units, return_sequences=True)(encoded)

                for i, units in enumerate(reversed(code_dim)):
                    if i == 1:
                        decoded = LSTM(units, return_sequences=True)(
                            RepeatVector(input_dim[0])(encoded))
                    elif i > 1:
                        decoded = LSTM(units, return_sequences=True)(decoded)
            else:
                raise ValueError("The codDim must be over 0.")

            decoded = LSTM(input_dim[-1], return_sequences=True)(decoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'dense':
            assert len(input_dim) == 1
            input_data = Input(shape=(input_dim[0], ))
            encoded = input_data
            for i, units in enumerate(code_dim):
                encoded = Dense(units, activation='relu')(encoded)
            decoded = Dense(input_dim[-1], activation='sigmoid')(encoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'cov':
            pass
Exemplo n.º 16
0
def ModelVideoQuestionAnswering():
    # First, let's define a vision model using a Sequential model.
    # This model will encode an image into a vector.
    vision_model = Sequential()
    vision_model.add(
        Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               input_shape=(224, 224, 3)))
    vision_model.add(Conv2D(64, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(128, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Flatten())

    # Now let's get a tensor with the output of our vision model:
    image_input = Input(shape=(224, 224, 3))
    encoded_image = vision_model(image_input)

    # Next, let's define a language model to encode the question into a vector.
    # Each question will be at most 100 words long,
    # and we will index words as integers from 1 to 9999.
    question_input = Input(shape=(100, ), dtype='int32')
    embedded_question = Embedding(input_dim=10000,
                                  output_dim=256,
                                  input_length=100)(question_input)
    encoded_question = LSTM(256)(embedded_question)

    # Let's concatenate the question vector and the image vector:
    merged = concatenate([encoded_question, encoded_image])

    # And let's train a logistic regression over 1000 words on top:
    output = Dense(1000, activation='softmax')(merged)

    # This is our final model:
    # vqa_model = Model(inputs=[image_input, question_input], outputs=output)

    video_input = Input(shape=(100, 224, 224, 3))
    # This is our video encoded via the previously trained vision_model (weights are reused)
    encoded_frame_sequence = TimeDistributed(vision_model)(
        video_input)  # the output will be a sequence of vectors
    encoded_video = LSTM(256)(
        encoded_frame_sequence)  # the output will be a vector

    # This is a model-level representation of the question encoder, reusing the same weights as before:
    question_encoder = Model(inputs=question_input, outputs=encoded_question)

    # Let's use it to encode the question:
    video_question_input = Input(shape=(100, ), dtype='int32')
    encoded_video_question = question_encoder(video_question_input)

    # And this is our video question answering model:
    merged = concatenate([encoded_video, encoded_video_question])
    output = Dense(1000, activation='softmax')(merged)
    video_qa_model = Model(inputs=[video_input, video_question_input],
                           outputs=output)

    return video_qa_model
    def build_model(self, model_name, query_dim, terms_dim, output_dim,
                    word_embedding):

        self.model_name = model_name

        query_input = Input(shape=(query_dim, ), name='query_input')
        terms_input = Input(shape=(terms_dim, ), name='terms_input')

        if model_name == 'lstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                LSTM(64, return_sequences=True)
            ])

        elif model_name == 'bilstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Bidirectional(LSTM(64, return_sequences=True))
            ])

        else:  # default cnn
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Conv1D(filters=64, kernel_size=3, strides=1),
                MaxPooling1D(pool_size=3)
            ])

        # Features
        query_feature = embedding_feature_block(query_input)
        terms_feature = embedding_feature_block(terms_input)

        # Query-Terms alignment
        attention = Dot(axes=-1)([query_feature, terms_feature])
        softmax_attention = Lambda(lambda x: softmax(x, axis=1),
                                   output_shape=unchanged_shape)(attention)
        terms_aligned = Dot(axes=1)([softmax_attention, terms_feature])

        # Aligned features
        if model_name == 'lstm':
            flatten_layer = LSTM(128, return_sequences=False)(terms_aligned)

        elif model_name == 'bilstm':
            flatten_layer = Bidirectional(LSTM(
                128, return_sequences=False))(terms_aligned)

        else:  # default cnn
            merged_cnn = Conv1D(filters=128, kernel_size=3,
                                strides=1)(terms_aligned)
            merged_cnn = MaxPooling1D(pool_size=3)(merged_cnn)
            flatten_layer = Flatten()(merged_cnn)

        # Output
        dense = BatchNormalization()(flatten_layer)
        dense = Dense(64, activation='sigmoid')(dense)
        out = Dense(output_dim, activation='linear')(dense)

        self.model = Model(inputs=[query_input, terms_input], outputs=out)
        self.model.compile(optimizer='adam', loss=losses.mean_squared_error)
        self.model.summary()
def construct_keras_api_model(embedding_weights):
    # input_no_time_no_repeat = Input(shape=max_len, dtype='int32')
    # embedded_no_time_no_repeat = Embedding(
    #     creative_id_window,embedding_size,weights=[embedding_weights],trainable=False
    # )(input_no_time_no_repeat)
    # ==================================================================================
    Input_fix_creative_id = Input(shape=(math.ceil(time_id_max / period_days) *
                                         period_length),
                                  dtype='int32',
                                  name='input_fix_creative_id')
    Embedded_fix_creative_id = Embedding(
        creative_id_window,
        embedding_size,
        weights=[embedding_weights],
        trainable=False)(Input_fix_creative_id)
    # ==================================================================================
    # input_no_time_with_repeat = Input(shape=max_len, dtype='int32')
    # embedded_no_time_with_repeat = Embedding(creative_id_window,embedding_size,weights=[embedding_weights],trainable=False)(input_no_time_with_repeat)

    # ----------------------------------------------------------------------
    GM_x = keras.layers.GlobalMaxPooling1D()(Embedded_fix_creative_id)
    GM_x = Dropout(0.5)(GM_x)
    GM_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(GM_x)
    GM_x = BatchNormalization()(GM_x)
    GM_x = Activation('relu')(GM_x)
    GM_x = Dropout(0.5)(GM_x)
    GM_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(GM_x)
    GM_x = BatchNormalization()(GM_x)
    GM_x = Activation('relu')(GM_x)
    GM_x = Dense(1, 'sigmoid')(GM_x)

    # ----------------------------------------------------------------------
    GA_x = GlobalAveragePooling1D()(Embedded_fix_creative_id)
    GA_x = Dropout(0.5)(GA_x)
    GA_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(GA_x)
    GA_x = BatchNormalization()(GA_x)
    GA_x = Activation('relu')(GA_x)
    GA_x = Dropout(0.5)(GA_x)
    GA_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(GA_x)
    GA_x = BatchNormalization()(GA_x)
    GA_x = Activation('relu')(GA_x)
    GA_x = Dense(1, 'sigmoid')(GA_x)

    # ==================================================================================
    Conv_creative_id = Conv1D(embedding_size, 15, 5,
                              activation='relu')(Embedded_fix_creative_id)
    # ----------------------------------------------------------------------
    Conv_GM_x = MaxPooling1D(7)(Conv_creative_id)
    Conv_GM_x = Conv1D(embedding_size, 2, 1, activation='relu')(Conv_GM_x)
    Conv_GM_x = GlobalMaxPooling1D()(Conv_GM_x)
    Conv_GM_x = Dropout(0.5)(Conv_GM_x)
    Conv_GM_x = Dense(embedding_size // 2,
                      kernel_regularizer=l2(0.001))(Conv_GM_x)
    Conv_GM_x = BatchNormalization()(Conv_GM_x)
    Conv_GM_x = Activation('relu')(Conv_GM_x)
    Conv_GM_x = Dropout(0.5)(Conv_GM_x)
    Conv_GM_x = Dense(embedding_size // 4,
                      kernel_regularizer=l2(0.001))(Conv_GM_x)
    Conv_GM_x = BatchNormalization()(Conv_GM_x)
    Conv_GM_x = Activation('relu')(Conv_GM_x)
    Conv_GM_x = Dense(1, 'sigmoid')(Conv_GM_x)

    # ----------------------------------------------------------------------
    Conv_GA_x = AveragePooling1D(7)(Conv_creative_id)
    Conv_GA_x = Conv1D(embedding_size, 2, 1, activation='relu')(Conv_GA_x)
    Conv_GA_x = GlobalAveragePooling1D()(Conv_GA_x)
    Conv_GA_x = Dropout(0.5)(Conv_GA_x)
    Conv_GA_x = Dense(embedding_size // 2,
                      kernel_regularizer=l2(0.001))(Conv_GA_x)
    Conv_GA_x = BatchNormalization()(Conv_GA_x)
    Conv_GA_x = Activation('relu')(Conv_GA_x)
    Conv_GA_x = Dropout(0.5)(Conv_GA_x)
    Conv_GA_x = Dense(embedding_size // 4,
                      kernel_regularizer=l2(0.001))(Conv_GA_x)
    Conv_GA_x = BatchNormalization()(Conv_GA_x)
    Conv_GA_x = Activation('relu')(Conv_GA_x)
    Conv_GA_x = Dense(1, 'sigmoid')(Conv_GA_x)

    # ----------------------------------------------------------------------
    LSTM_x = Conv1D(embedding_size, 14, 7, activation='relu')(Conv_creative_id)
    LSTM_x = LSTM(embedding_size, return_sequences=True)(LSTM_x)
    LSTM_x = LSTM(embedding_size, return_sequences=True)(LSTM_x)
    LSTM_x = LSTM(embedding_size)(LSTM_x)
    LSTM_x = Dropout(0.5)(LSTM_x)
    LSTM_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(LSTM_x)
    LSTM_x = BatchNormalization()(LSTM_x)
    LSTM_x = Activation('relu')(LSTM_x)
    LSTM_x = Dropout(0.5)(LSTM_x)
    LSTM_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(LSTM_x)
    LSTM_x = BatchNormalization()(LSTM_x)
    LSTM_x = Activation('relu')(LSTM_x)
    LSTM_x = Dense(1, 'sigmoid')(LSTM_x)

    # ----------------------------------------------------------------------
    concatenated = concatenate([
        GM_x,
        GA_x,
        Conv_GM_x,
        Conv_GA_x,
        LSTM_x,
    ],
                               axis=-1)
    output_tensor = Dense(1, 'sigmoid')(concatenated)

    keras_api_model = Model(
        [
            # input_no_time_no_repeat,
            Input_fix_creative_id,
            # input_no_time_with_repeat,
        ],
        output_tensor)
    keras_api_model.summary()
    plot_model(keras_api_model, to_file='model/keras_api_word2vec_model.png')
    print('-' * 5 + ' ' * 3 + "编译模型" + ' ' * 3 + '-' * 5)
    keras_api_model.compile(optimizer=optimizers.RMSprop(lr=RMSProp_lr),
                            loss=losses.binary_crossentropy,
                            metrics=[metrics.binary_accuracy])
    return keras_api_model