Exemplo n.º 1
0
  def test_metrics_labeled(self):
    tree1 = [1, 'a', [2, 'b'], [3, 'c'], [4, 'd']]
    tree2 = [5, 'e', [6, 'f', [7, 'g']]]
    fwd = tdb.ForwardDeclaration()

    leaf = (tdb.Scalar('int32'), tdb.Identity()) >>  tdm.Metric('leaf')
    internal = tdb.AllOf(
        (tdb.Scalar('int32'), tdb.Identity())  >> tdm.Metric('internal'),
        tdb.Slice(start=2) >> tdb.Map(fwd())) >> tdb.Void()
    tree = tdb.OneOf(key_fn=lambda expr: len(expr) > 2,
                     case_blocks=(leaf, internal))
    fwd.resolve_to(tree)

    with self.test_session() as sess:
      c = tdc.Compiler.create(tree)
      feed_dict, labels = c.build_feed_dict([tree1, tree2], metric_labels=True)
      self.assertEqual(['b', 'c', 'd', 'g'], labels['leaf'])
      self.assertEqual(['a', 'e', 'f'], labels['internal'])
      leaf_values, internal_values = sess.run(
          [c.metric_tensors['leaf'], c.metric_tensors['internal']], feed_dict)
      np.testing.assert_equal([2, 3, 4, 7], leaf_values)
      np.testing.assert_equal([1, 5, 6], internal_values)
Exemplo n.º 2
0
 def test_concat_nested(self):
   block = (tdb.AllOf(tdb.AllOf(tdb.Scalar(), tdb.Scalar()),
                      tdb.AllOf(tdb.Scalar(), tdb.Scalar())) >>
            tdb.Concat(flatten=True))
   self.assertBuildsConst([42.0] * 4, block, 42.0)
Exemplo n.º 3
0
 def test_tuple_of_seq(self):
   block = tdb.AllOf(
       tdb.Map(tdb.Scalar() >> tdb.Function(tf.negative)),
       tdb.Map(tdb.Scalar() >> tdb.Function(tf.identity)))
   self.assertBuilds(([], []), block, [], max_depth=0)
   self.assertBuilds(([-1., -2.], [1., 2.]), block, [1, 2])
Exemplo n.º 4
0
 def test_forward_declaration_orphaned(self):
   fwd = tdb.ForwardDeclaration(tdt.VoidType(), tdt.TensorType([]))
   b = tdb.AllOf(fwd(), fwd()) >> tdb.Sum()
   fwd.resolve_to(tdb.FromTensor(tf.ones([])))
   self.assertBuilds(2., b, None)
Exemplo n.º 5
0
 def test_record_tuple(self):
   block = (tdb.AllOf(tdb.Scalar(), tdb.OneHot(3, dtype='int32')) >>
            (tdb.Function(tf.square), tdb.Function(tf.negative)))
   self.assertBuilds((4., [0, 0, -1]), block, 2)
Exemplo n.º 6
0
 def test_composition_slice(self):
   c1 = tdb.Composition().set_input_type(tdt.VoidType())
   with c1.scope():
     t = tdb.AllOf(*[np.array(t) for t in range(5)]).reads(c1.input)
     c1.output.reads(tdb.Function(tf.add).reads(t[1:-1:2]))
   self.assertBuilds(4, c1, None, max_depth=1)
Exemplo n.º 7
0
 def test_composition_no_output_void_type(self):
   b = tdb.AllOf(tdb.Void(), tdb.Scalar()) >> tdb.GetItem(1)
   self.assertBuildsConst(42., b, 42)
Exemplo n.º 8
0
def scalar_all_of(*fns):
  return tdb.Scalar() >> tdb.AllOf(*[tdb.Function(f) for f in fns])
Exemplo n.º 9
0
  def test_repr(self):
    goldens = {
        tdb.Tensor([]): '<td.Tensor dtype=\'float32\' shape=()>',
        tdb.Tensor([1, 2], 'int32', name='foo'):
        '<td.Tensor \'foo\' dtype=\'int32\' shape=(1, 2)>',

        tdb.Scalar('int64'): '<td.Scalar dtype=\'int64\'>',

        tdb.Vector(42): '<td.Vector dtype=\'float32\' size=42>',

        tdb.FromTensor(tf.zeros(3)): '<td.FromTensor \'zeros:0\'>',

        tdb.Function(tf.negative,
                     name='foo'): '<td.Function \'foo\' tf_fn=\'negative\'>',

        tdb.Identity(): '<td.Identity>',
        tdb.Identity('foo'): '<td.Identity \'foo\'>',

        tdb.InputTransform(ord): '<td.InputTransform py_fn=\'ord\'>',

        tdb.SerializedMessageToTree('foo'):
        '<td.SerializedMessageToTree \'foo\' '
        'py_fn=\'serialized_message_to_tree\'>',

        tdb.GetItem(3, 'mu'): '<td.GetItem \'mu\' key=3>',

        tdb.Length(): '<td.Length dtype=\'float32\'>',

        tdb.Slice(stop=2): '<td.Slice key=slice(None, 2, None)>',
        tdb.Slice(stop=2, name='x'):
        '<td.Slice \'x\' key=slice(None, 2, None)>',

        tdb.ForwardDeclaration(name='foo')():
        '<td.ForwardDeclaration() \'foo\'>',

        tdb.Composition(name='x').input: '<td.Composition.input \'x\'>',
        tdb.Composition(name='x').output: '<td.Composition.output \'x\'>',
        tdb.Composition(name='x'): '<td.Composition \'x\'>',

        tdb.Pipe(): '<td.Pipe>',
        tdb.Pipe(tdb.Scalar(), tdb.Identity()): '<td.Pipe>',

        tdb.Record({}, name='x'): '<td.Record \'x\' ordered=False>',
        tdb.Record((), name='x'): '<td.Record \'x\' ordered=True>',

        tdb.AllOf(): '<td.AllOf>',
        tdb.AllOf(tdb.Identity()): '<td.AllOf>',
        tdb.AllOf(tdb.Identity(), tdb.Identity()): '<td.AllOf>',

        tdb.AllOf(name='x'): '<td.AllOf \'x\'>',
        tdb.AllOf(tdb.Identity(), name='x'): '<td.AllOf \'x\'>',
        tdb.AllOf(tdb.Identity(), tdb.Identity(), name='x'): '<td.AllOf \'x\'>',

        tdb.Map(tdb.Scalar(), name='x'):
        '<td.Map \'x\' element_block=<td.Scalar dtype=\'float32\'>>',

        tdb.Fold(tdb.Function(tf.add), tf.ones([]), name='x'):
        '<td.Fold \'x\' combine_block=<td.Function tf_fn=\'add\'> '
        'start_block=<td.FromTensor \'ones:0\'>>',

        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8))):
        '<td.RNN>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), name='x'):
        '<td.RNN \'x\'>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)),
                initial_state=tf.ones(8)):
        '<td.RNN>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)),
                initial_state=tf.ones(8), name='x'):
        '<td.RNN \'x\'>',

        tdb.Reduce(tdb.Function(tf.add), name='x'):
        '<td.Reduce \'x\' combine_block=<td.Function tf_fn=\'add\'>>',

        tdb.Sum(name='foo'):
        '<td.Sum \'foo\' combine_block=<td.Function tf_fn=\'add\'>>',

        tdb.Min(name='foo'):
        '<td.Min \'foo\' combine_block=<td.Function tf_fn=\'minimum\'>>',

        tdb.Max(name='foo'):
        '<td.Max \'foo\' combine_block=<td.Function tf_fn=\'maximum\'>>',

        tdb.Mean(name='foo'): '<td.Mean \'foo\'>',

        tdb.OneOf(ord, (tdb.Scalar(), tdb.Scalar()), name='x'):
        '<td.OneOf \'x\'>',

        tdb.Optional(tdb.Scalar(), name='foo'):
        '<td.Optional \'foo\' some_case_block=<td.Scalar dtype=\'float32\'>>',

        tdb.Concat(1, True, 'x'):
        '<td.Concat \'x\' concat_dim=1 flatten=True>',

        tdb.Broadcast(name='x'): '<td.Broadcast \'x\'>',

        tdb.Zip(name='x'): '<td.Zip \'x\'>',

        tdb.NGrams(n=42, name='x'): '<td.NGrams \'x\' n=42>',

        tdb.OneHot(2, 3, name='x'):
        '<td.OneHot \'x\' dtype=\'float32\' start=2 stop=3>',
        tdb.OneHot(3): '<td.OneHot dtype=\'float32\' start=0 stop=3>',

        tdb.OneHotFromList(['a', 'b']): '<td.OneHotFromList>',
        tdb.OneHotFromList(['a', 'b'], name='foo'):
        '<td.OneHotFromList \'foo\'>',

        tdb.Nth(name='x'): '<td.Nth \'x\'>',

        tdb.Zeros([], 'x'): '<td.Zeros \'x\'>',

        tdb.Void(): '<td.Void>',
        tdb.Void('foo'): '<td.Void \'foo\'>',

        tdm.Metric('foo'): '<td.Metric \'foo\'>'}
    for block, expected_repr in sorted(six.iteritems(goldens),
                                       key=lambda kv: kv[1]):
      self.assertEqual(repr(block), expected_repr)
Exemplo n.º 10
0
 def test_eval_metrics(self):
   b = tdb.Map(tdb.Scalar() >> tdb.AllOf(tdm.Metric('x'), tdb.Identity()))
   self.assertBuilds(([(None, 1.), (None, 2.)], {'x': [1., 2.]}), b, [1, 2,])