Exemplo n.º 1
0
    def testMultipleCallsToEvalInputReceiver(self):
        graph = tf.Graph()
        features1 = {'apple': tf.constant(1.0), 'banana': tf.constant(2.0)}
        labels1 = tf.constant(3.0)
        receiver_tensors1 = {'examples': tf.placeholder(tf.string)}

        features2 = {'cherry': tf.constant(3.0)}
        labels2 = {'alpha': tf.constant(4.0), 'bravo': tf.constant(5.0)}
        receiver_tensors2 = {'examples': tf.placeholder(tf.string)}

        with graph.as_default():
            export.EvalInputReceiver(features=features1,
                                     labels=labels1,
                                     receiver_tensors=receiver_tensors1)

            feature_keys_collection_name = encoding.with_suffix(
                encoding.FEATURES_COLLECTION, encoding.KEY_SUFFIX)
            feature_nodes_collection_name = encoding.with_suffix(
                encoding.FEATURES_COLLECTION, encoding.NODE_SUFFIX)
            label_keys_collection_name = encoding.with_suffix(
                encoding.LABELS_COLLECTION, encoding.KEY_SUFFIX)
            label_nodes_collection_name = encoding.with_suffix(
                encoding.LABELS_COLLECTION, encoding.NODE_SUFFIX)

            self.assertEqual(
                2, len(tf.get_collection(feature_keys_collection_name)))
            self.assertEqual(
                2, len(tf.get_collection(feature_nodes_collection_name)))
            self.assertEqual(
                1, len(tf.get_collection(label_keys_collection_name)))
            self.assertEqual(
                1, len(tf.get_collection(label_nodes_collection_name)))
            self.assertEqual(
                1, len(tf.get_collection(encoding.EXAMPLE_REF_COLLECTION)))
            self.assertEqual(
                1, len(tf.get_collection(encoding.TFMA_VERSION_COLLECTION)))

            # Call again with a different set of features, labels and receiver
            # tensors, check that the latest call overrides the earlier one.
            #
            # Note that we only check the lengths of some collections: more detailed
            # checks would require the test to include more knowledge about the
            # details of how exporting is done.
            export.EvalInputReceiver(features=features2,
                                     labels=labels2,
                                     receiver_tensors=receiver_tensors2)
            self.assertEqual(
                1, len(tf.get_collection(feature_keys_collection_name)))
            self.assertEqual(
                1, len(tf.get_collection(feature_nodes_collection_name)))
            self.assertEqual(
                2, len(tf.get_collection(label_keys_collection_name)))
            self.assertEqual(
                2, len(tf.get_collection(label_nodes_collection_name)))
            self.assertEqual(
                1, len(tf.get_collection(encoding.EXAMPLE_REF_COLLECTION)))
            self.assertEqual(
                1, len(tf.get_collection(encoding.TFMA_VERSION_COLLECTION)))
Exemplo n.º 2
0
    def eval_input_receiver_fn():
        """Eval input receiver function."""
        serialized_tf_example = tf.compat.v1.placeholder(
            dtype=tf.string, shape=[None], name='input_example_tensor')

        language = tf.feature_column.categorical_column_with_vocabulary_list(
            'language', ['english', 'chinese', 'other'])
        age = tf.feature_column.numeric_column('age')
        english_label = tf.feature_column.numeric_column('english_label')
        chinese_label = tf.feature_column.numeric_column('chinese_label')
        other_label = tf.feature_column.numeric_column('other_label')
        all_features = [
            age, language, english_label, chinese_label, other_label
        ]
        feature_spec = tf.feature_column.make_parse_example_spec(all_features)
        receiver_tensors = {'examples': serialized_tf_example}
        features = tf.io.parse_example(serialized=serialized_tf_example,
                                       features=feature_spec)

        labels = {
            'english_head': features['english_label'],
            'chinese_head': features['chinese_label'],
            'other_head': features['other_label'],
        }

        return export.EvalInputReceiver(features=features,
                                        receiver_tensors=receiver_tensors,
                                        labels=labels)
Exemplo n.º 3
0
  def eval_input_receiver_fn():
    """Eval input receiver function."""
    serialized_tf_example = tf.placeholder(
        dtype=tf.string, shape=[None], name='input_example_tensor')

    language = tf.contrib.layers.sparse_column_with_keys(
        'language', ['english', 'chinese', 'other'])
    age = tf.contrib.layers.real_valued_column('age')
    english_label = tf.contrib.layers.real_valued_column('english_label')
    chinese_label = tf.contrib.layers.real_valued_column('chinese_label')
    other_label = tf.contrib.layers.real_valued_column('other_label')
    all_features = [age, language, english_label, chinese_label, other_label]
    feature_spec = tf.contrib.layers.create_feature_spec_for_parsing(
        all_features)
    receiver_tensors = {'examples': serialized_tf_example}
    features = tf.parse_example(serialized_tf_example, feature_spec)

    labels = {
        'english_head': features['english_label'],
        'chinese_head': features['chinese_label'],
        'other_head': features['other_label'],
    }

    return export.EvalInputReceiver(
        features=features, receiver_tensors=receiver_tensors, labels=labels)
Exemplo n.º 4
0
 def testEvalInputReceiverReceiverTensorKeyCheck(self):
     with self.assertRaisesRegexp(ValueError,
                                  'exactly one key named examples'):
         export.EvalInputReceiver(
             features={},
             labels={},
             receiver_tensors={'bad_key': tf.constant(0.0)})
Exemplo n.º 5
0
    def eval_input_receiver_fn():
        """Eval input receiver function."""
        csv_row = tf.placeholder(dtype=tf.string,
                                 shape=[None],
                                 name='input_csv_row')
        features = parse_csv(csv_row)
        receiver_tensors = {'examples': csv_row}

        return export.EvalInputReceiver(features=features,
                                        receiver_tensors=receiver_tensors,
                                        labels=features['label'])
def _eval_input_receiver_fn():
    """Eval input receiver function."""
    csv_row = tf.placeholder(dtype=tf.string,
                             shape=[None],
                             name='input_csv_row')
    features = _parse_csv(csv_row)
    receiver_tensors = {'examples': csv_row}

    # the constructor of EvalInputReceiver() has side effects (populating some
    # TF collections). Calling twice here to make sure the collisions are handled
    # correctly.
    export.EvalInputReceiver(features=features,
                             labels=features['input_index'],
                             receiver_tensors=receiver_tensors,
                             example_ref=features['input_index'])

    return export.EvalInputReceiver(features=features,
                                    labels=features['input_index'],
                                    receiver_tensors=receiver_tensors,
                                    example_ref=features['input_index'])
Exemplo n.º 7
0
def _bad_eval_input_receiver_fn_out_of_range_input_refs():
    """A bad eval input receiver function (input_refs has out-of-range index)."""
    csv_row = tf.compat.v1.placeholder(dtype=tf.string,
                                       shape=[None],
                                       name='input_csv_row')
    features = _parse_csv(csv_row)
    receiver_tensors = {'examples': csv_row}

    return export.EvalInputReceiver(features=features,
                                    labels=features['input_index'],
                                    receiver_tensors=receiver_tensors,
                                    input_refs=features['input_index'] + 1)
    def eval_input_receiver_fn():
        """Eval input receiver function."""
        serialized_tf_example = tf.placeholder(dtype=tf.string,
                                               shape=[None],
                                               name='input_example_tensor')
        receiver_tensors = {'examples': serialized_tf_example}
        features = tf.parse_example(serialized_tf_example, label_feature_spec)
        _make_embedding_and_sparse_values(features)

        return export.EvalInputReceiver(features=features,
                                        receiver_tensors=receiver_tensors,
                                        labels=features['label'])
Exemplo n.º 9
0
 def eval_input_receiver_fn():
     """An input_fn that expects a serialized tf.Example."""
     serialized_tf_example = tf.placeholder(dtype=tf.string,
                                            shape=[None],
                                            name='input_example_tensor')
     features = tf.parse_example(serialized_tf_example, eval_feature_spec)
     labels = {
         'actual_label': features['label'],
         'var_int': features['var_int']
     }
     return export.EvalInputReceiver(
         features=features,
         labels=labels,
         receiver_tensors={'examples': serialized_tf_example})
def _bad_eval_input_receiver_fn_misaligned_input_refs():
  """A bad eval input receiver function capturing a misaligned input_refs."""
  csv_row = tf.compat.v1.placeholder(
      dtype=tf.string, shape=[None], name='input_csv_row')
  features = _parse_csv(csv_row)
  receiver_tensors = {'examples': csv_row}

  return export.EvalInputReceiver(
      features=features,
      labels=features['input_index'],
      receiver_tensors=receiver_tensors,
      input_refs=tf.concat(
          [features['input_index'],
           tf.constant([0], dtype=tf.int32)], axis=0))
Exemplo n.º 11
0
    def eval_input_receiver_fn():
        """Eval input receiver function."""
        serialized_tf_example = tf.compat.v1.placeholder(
            dtype=tf.string, shape=[None], name='input_example_tensor')
        feature_spec = {
            'age': tf.io.FixedLenFeature([1], dtype=tf.float32),
            'label': tf.io.FixedLenFeature([1], dtype=tf.float32)
        }
        receiver_tensors = {'examples': serialized_tf_example}
        features = tf.io.parse_example(serialized=serialized_tf_example,
                                       features=feature_spec)

        return export.EvalInputReceiver(features=features,
                                        labels=features['label'],
                                        receiver_tensors=receiver_tensors)
Exemplo n.º 12
0
def _eval_input_receiver_using_iterator_fn():
    """Eval input receiver function using an iterator."""
    csv_row = tf.compat.v1.placeholder(dtype=tf.string,
                                       shape=[None],
                                       name='input_csv_row')
    iterator = tf.compat.v1.data.make_initializable_iterator(
        tf.compat.v1.data.Dataset.from_tensors(csv_row))
    features = _parse_csv(iterator.get_next())
    receiver_tensors = {'examples': csv_row}

    return export.EvalInputReceiver(
        features=features,
        labels=features['input_index'],
        receiver_tensors=receiver_tensors,
        input_refs=features['input_index'],
        iterator_initializer=iterator.initializer.name)
Exemplo n.º 13
0
    def eval_input_receiver_fn():
        """An input_fn that expects a serialized tf.Example."""
        # Note it's *required* that the batch size should be variable for TFMA.
        serialized_tf_example = tf.compat.v1.placeholder(
            dtype=tf.string, shape=[None], name='input_example_tensor')
        features = tf.io.parse_example(serialized=serialized_tf_example,
                                       features=feature_spec)
        labels = None if label_key is None else features[label_key]

        if isinstance(labels, tf.SparseTensor):
            # This bit here is why a custom eval_input_receiver_fn is specified.
            labels = tf.sparse.to_dense(labels, default_value=-1)

        return export.EvalInputReceiver(
            features=features,
            labels=labels,
            receiver_tensors={'examples': serialized_tf_example})
Exemplo n.º 14
0
  def eval_input_receiver_fn():
    """Eval input receiver function."""
    serialized_tf_example = tf.placeholder(
        dtype=tf.string, shape=[None], name='input_example_tensor')

    animals = tf.contrib.layers.sparse_column_with_keys('animals',
                                                        ['bird', 'cat', 'dog'])
    label = tf.contrib.layers.real_valued_column('label')
    all_features = [animals, label]
    feature_spec = tf.contrib.layers.create_feature_spec_for_parsing(
        all_features)
    receiver_tensors = {'examples': serialized_tf_example}
    features = tf.parse_example(serialized_tf_example, feature_spec)

    return export.EvalInputReceiver(
        features=features,
        receiver_tensors=receiver_tensors,
        labels=features['label'])
    def eval_input_receiver_fn():
        """Eval input receiver function."""
        serialized_tf_example = tf.placeholder(dtype=tf.string,
                                               shape=[None],
                                               name='input_example_tensor')
        feature_spec = {
            'prediction': tf.FixedLenFeature([1], dtype=tf.float32),
            'label': tf.FixedLenFeature([1], dtype=tf.float32),
            'fixed_float': tf.FixedLenFeature([1], dtype=tf.float32),
            'fixed_string': tf.FixedLenFeature([1], dtype=tf.string),
            'var_float': tf.VarLenFeature(dtype=tf.float32),
            'var_string': tf.VarLenFeature(dtype=tf.string)
        }
        receiver_tensors = {'examples': serialized_tf_example}
        features = tf.parse_example(serialized_tf_example, feature_spec)

        return export.EvalInputReceiver(features=features,
                                        receiver_tensors=receiver_tensors,
                                        labels=features['label'])
Exemplo n.º 16
0
    def eval_input_receiver_fn():
        """Eval input receiver function."""
        serialized_tf_example = tf.placeholder(dtype=tf.string,
                                               shape=[None],
                                               name='input_example_tensor')

        language = tf.contrib.layers.sparse_column_with_keys(
            'language', ['english', 'chinese'])
        slice_key = tf.contrib.layers.sparse_column_with_hash_bucket(
            'slice_key', 100)
        age = tf.contrib.layers.real_valued_column('age')
        label = tf.contrib.layers.real_valued_column('label')
        all_features = [age, language, label, slice_key]
        feature_spec = tf.contrib.layers.create_feature_spec_for_parsing(
            all_features)
        receiver_tensors = {'examples': serialized_tf_example}
        features = tf.parse_example(serialized_tf_example, feature_spec)

        return export.EvalInputReceiver(features=features,
                                        receiver_tensors=receiver_tensors,
                                        labels=features['label'])