Exemplo n.º 1
0
    def split_block(self, target):
        """Split the current block by inserting jump to the given block.

    The terminator of the current block becomes the terminator of the new last
    block.  The current block gets a `PushGotoOp` pushing the new last block and
    jumping to the given target block.

    Args:
      target: The block to jump to.
    """
        new_block = inst.Block(instructions=[],
                               terminator=self._cur_block().terminator)
        self._cur_block().terminator = inst.PushGotoOp(new_block, target)
        self.append_block(new_block)
Exemplo n.º 2
0
def pea_nuts_program(latent_shape, choose_depth, step_state):
    """Synthetic program usable for benchmarking VM performance.

  This program is intended to resemble the control flow and scaling
  parameters of the NUTS algorithm, without any of the complexity.
  Hence the name.

  Each batch member looks like:

    state = ... # shape latent_shape

    def recur(depth, state):
      if depth > 1:
        state1 = recur(depth - 1, state)
        state2 = state1 + 1
        state3 = recur(depth - 1, state2)
        ans = state3 + 1
      else:
        ans = step_state(state)  # To simulate NUTS, something heavy
      return ans

    while count > 0:
      count = count - 1
      depth = choose_depth(count)
      state = recur(depth, state)

  Args:
    latent_shape: Python `tuple` of `int` giving the event shape of the
      latent state.
    choose_depth: Python `Tensor -> Tensor` callable.  The input
      `Tensor` will have shape `[batch_size]` (i.e., scalar event
      shape), and give the iteration of the outer while loop the
      thread is in.  The `choose_depth` function must return a `Tensor`
      of shape `[batch_size]` giving the depth, for each thread,
      to which to call `recur` in this iteration.
    step_state: Python `Tensor -> Tensor` callable.  The input and
      output `Tensor`s will have shape `[batch_size] + latent_shape`.
      This function is expected to update the state, and represents
      the "real work" versus which the VM overhead is being measured.

  Returns:
    program: `instructions.Program` that runs the above benchmark.
  """
    entry = instructions.Block()
    top_body = instructions.Block()
    finish_body = instructions.Block()
    enter_recur = instructions.Block()
    recur_body_1 = instructions.Block()
    recur_body_2 = instructions.Block()
    recur_body_3 = instructions.Block()
    recur_base_case = instructions.Block()
    # pylint: disable=bad-whitespace
    entry.assign_instructions([
        instructions.PrimOp(["count"], "cond",
                            lambda count: count > 0),  # cond = count > 0
        instructions.BranchOp("cond", top_body,
                              instructions.halt()),  # if cond
    ])
    top_body.assign_instructions([
        instructions.PopOp(["cond"]),  #   done with cond now
        instructions.PrimOp(["count"], "ctm1",
                            lambda count: count - 1),  #   ctm1 = count - 1
        instructions.PopOp(["count"]),  #   done with count now
        instructions.push_op(["ctm1"], ["count"]),  #   count = ctm1
        instructions.PopOp(["ctm1"]),  #   done with ctm1
        instructions.PrimOp(["count"], "depth",
                            choose_depth),  #   depth = choose_depth(count)
        instructions.push_op(
            ["depth", "state"],
            ["depth", "state"]),  #   state = recur(depth, state)
        instructions.PopOp(["depth", "state"]),  #     done with depth, state
        instructions.PushGotoOp(finish_body, enter_recur),
    ])
    finish_body.assign_instructions([
        instructions.push_op(["ans"], ["state"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.GotoOp(entry),  # end of while body
    ])
    # Definition of recur begins here
    enter_recur.assign_instructions([
        instructions.PrimOp(["depth"], "cond1",
                            lambda depth: depth > 0),  # cond1 = depth > 0
        instructions.BranchOp("cond1", recur_body_1,
                              recur_base_case),  # if cond1
    ])
    recur_body_1.assign_instructions([
        instructions.PopOp(["cond1"]),  #   done with cond1 now
        instructions.PrimOp(["depth"], "dm1",
                            lambda depth: depth - 1),  #   dm1 = depth - 1
        instructions.PopOp(["depth"]),  #   done with depth
        instructions.push_op(
            ["dm1", "state"],
            ["depth", "state"]),  #   state1 = recur(dm1, state)
        instructions.PopOp(["state"]),  #     done with state
        instructions.PushGotoOp(recur_body_2, enter_recur),
    ])
    recur_body_2.assign_instructions([
        instructions.push_op(["ans"], ["state1"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.PrimOp(["state1"], "state2",
                            lambda state: state + 1),  #   state2 = state1 + 1
        instructions.PopOp(["state1"]),  #   done with state1
        instructions.push_op(
            ["dm1", "state2"],
            ["depth", "state"]),  #   state3 = recur(dm1, state2)
        instructions.PopOp(["dm1", "state2"]),  #     done with dm1, state2
        instructions.PushGotoOp(recur_body_3, enter_recur),
    ])
    recur_body_3.assign_instructions([
        instructions.push_op(["ans"], ["state3"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.PrimOp(["state3"], "ans",
                            lambda state: state + 1),  #   ans = state3 + 1
        instructions.PopOp(["state3"]),  #   done with state3
        instructions.IndirectGotoOp(),  #   return ans
    ])
    recur_base_case.assign_instructions([
        instructions.PopOp(["cond1", "depth"]),  #   done with cond1, depth
        instructions.PrimOp(["state"], "ans",
                            step_state),  #   ans = step_state(state)
        instructions.PopOp(["state"]),  #   done with state
        instructions.IndirectGotoOp(),  #   return ans
    ])

    pea_nuts_graph = instructions.ControlFlowGraph([
        entry,
        top_body,
        finish_body,
        enter_recur,
        recur_body_1,
        recur_body_2,
        recur_body_3,
        recur_base_case,
    ])

    # pylint: disable=bad-whitespace
    pea_nuts_vars = {
        "count": instructions.single_type(np.int64, ()),
        "cond": instructions.single_type(np.bool, ()),
        "cond1": instructions.single_type(np.bool, ()),
        "ctm1": instructions.single_type(np.int64, ()),
        "depth": instructions.single_type(np.int64, ()),
        "dm1": instructions.single_type(np.int64, ()),
        "state": instructions.single_type(np.float32, latent_shape),
        "state1": instructions.single_type(np.float32, latent_shape),
        "state2": instructions.single_type(np.float32, latent_shape),
        "state3": instructions.single_type(np.float32, latent_shape),
        "ans": instructions.single_type(np.float32, latent_shape),
    }

    return instructions.Program(pea_nuts_graph, [], pea_nuts_vars,
                                ["count", "state"], "state")
Exemplo n.º 3
0
def fibonacci_program():
    """More complicated, fibonacci program: computes fib(n): fib(0) = fib(1) = 1.

  Returns:
    program: Full-powered `instructions.Program` that computes fib(n).
  """
    entry = instructions.Block(name="entry")
    enter_fib = instructions.Block(name="enter_fib")
    recur1 = instructions.Block(name="recur1")
    recur2 = instructions.Block(name="recur2")
    recur3 = instructions.Block(name="recur3")
    finish = instructions.Block(name="finish")
    # pylint: disable=bad-whitespace
    entry.assign_instructions([
        instructions.PushGotoOp(instructions.halt(), enter_fib),
    ])
    # Definition of fibonacci function starts here
    enter_fib.assign_instructions([
        instructions.PrimOp(["n"], "cond", lambda n: n > 1),  # cond = n > 1
        instructions.BranchOp("cond", recur1, finish),  # if cond
    ])
    recur1.assign_instructions([
        instructions.PopOp(["cond"]),  #   done with cond now
        instructions.PrimOp(["n"], "nm1", lambda n: n - 1),  #   nm1 = n - 1
        instructions.push_op(["nm1"], ["n"]),  #   fibm1 = fibonacci(nm1)
        instructions.PopOp(["nm1"]),  #     done with nm1
        instructions.PushGotoOp(recur2, enter_fib),
    ])
    recur2.assign_instructions([
        instructions.push_op(["ans"], ["fibm1"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.PrimOp(["n"], "nm2", lambda n: n - 2),  #   nm2 = n - 2
        instructions.PopOp(["n"]),  #   done with n
        instructions.push_op(["nm2"], ["n"]),  #   fibm2 = fibonacci(nm2)
        instructions.PopOp(["nm2"]),  #     done with nm2
        instructions.PushGotoOp(recur3, enter_fib),
    ])
    recur3.assign_instructions([
        instructions.push_op(["ans"], ["fibm2"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.PrimOp(["fibm1", "fibm2"], "ans",
                            lambda x, y: x + y),  #   ans = fibm1 + fibm2
        instructions.PopOp(["fibm1", "fibm2"]),  #   done with fibm1, fibm2
        instructions.IndirectGotoOp(),  #   return ans
    ])
    finish.assign_instructions([  # else:
        instructions.PopOp(["n", "cond"]),  #   done with n, cond
        instructions.PrimOp([], "ans", lambda: 1),  #   ans = 1
        instructions.IndirectGotoOp(),  #   return ans
    ])

    fibonacci_blocks = [entry, enter_fib, recur1, recur2, recur3, finish]

    # pylint: disable=bad-whitespace
    fibonacci_vars = {
        "n": instructions.single_type(np.int64, ()),
        "cond": instructions.single_type(np.bool, ()),
        "nm1": instructions.single_type(np.int64, ()),
        "fibm1": instructions.single_type(np.int64, ()),
        "nm2": instructions.single_type(np.int64, ()),
        "fibm2": instructions.single_type(np.int64, ()),
        "ans": instructions.single_type(np.int64, ()),
    }

    return instructions.Program(
        instructions.ControlFlowGraph(fibonacci_blocks), [], fibonacci_vars,
        ["n"], "ans")