Exemplo n.º 1
0
    def _to_dense(self):
        num_cols = 0
        rows = []
        broadcasted_blocks = [
            operator.to_dense() for operator in self.operators
        ]
        broadcasted_blocks = linear_operator_util.broadcast_matrix_batch_dims(
            broadcasted_blocks)
        for block in broadcasted_blocks:
            batch_row_shape = array_ops.shape(block)[:-1]

            zeros_to_pad_before_shape = array_ops.concat(
                [batch_row_shape, [num_cols]], axis=-1)
            zeros_to_pad_before = array_ops.zeros(
                shape=zeros_to_pad_before_shape, dtype=block.dtype)
            num_cols += array_ops.shape(block)[-1]
            zeros_to_pad_after_shape = array_ops.concat(
                [batch_row_shape, [self.domain_dimension_tensor() - num_cols]],
                axis=-1)
            zeros_to_pad_after = array_ops.zeros(
                shape=zeros_to_pad_after_shape, dtype=block.dtype)

            rows.append(
                array_ops.concat(
                    [zeros_to_pad_before, block, zeros_to_pad_after], axis=-1))

        mat = array_ops.concat(rows, axis=-2)
        mat.set_shape(_ops.TensorShape(self.shape))
        return mat
Exemplo n.º 2
0
    def _matmul(self, x, adjoint=False, adjoint_arg=False):
        if self._assert_proper_shapes:
            x = linalg.adjoint(x) if adjoint_arg else x
            aps = linear_operator_util.assert_compatible_matrix_dimensions(
                self, x)
            x = control_flow_ops.with_dependencies([aps], x)
        if self.is_square:
            # Note that adjoint has no effect since this matrix is self-adjoint.
            if adjoint_arg:
                output_shape = array_ops.concat([
                    array_ops.shape(x)[:-2],
                    [array_ops.shape(x)[-1],
                     array_ops.shape(x)[-2]]
                ],
                                                axis=0)
            else:
                output_shape = array_ops.shape(x)

            return self._possibly_broadcast_batch_shape(
                array_ops.zeros(shape=output_shape, dtype=x.dtype))

        x_shape = array_ops.shape(x)
        n = self._num_columns if adjoint else self._num_rows
        m = x_shape[-2] if adjoint_arg else x_shape[-1]

        output_shape = array_ops.concat([x_shape[:-2], [n, m]], axis=0)

        zeros = array_ops.zeros(shape=output_shape, dtype=x.dtype)
        return self._possibly_broadcast_batch_shape(zeros)
Exemplo n.º 3
0
    def _vectorize_then_blockify(self, matrix):
        """Shape batch matrix to batch vector, then blockify trailing dimensions."""
        # Suppose
        #   _ops.TensorShape(matrix.shape) = [m0, m1, m2, m3],
        # and matrix is a matrix because the final two dimensions are matrix dims.
        #   self.block_depth = 2,
        #   self.block_shape = [b0, b1]  (note b0 * b1 = m2).
        # We will reshape matrix to
        #   [m3, m0, m1, b0, b1].

        # Vectorize: Reshape to batch vector.
        #   [m0, m1, m2, m3] --> [m3, m0, m1, m2]
        # This is called "vectorize" because we have taken the final two matrix dims
        # and turned this into a size m3 batch of vectors.
        vec = distribution_util.rotate_transpose(matrix, shift=1)

        # Blockify: Blockfy trailing dimensions.
        #   [m3, m0, m1, m2] --> [m3, m0, m1, b0, b1]
        if (_ops.TensorShape(vec.shape).is_fully_defined()
                and self.block_shape.is_fully_defined()):
            # vec_leading_shape = [m3, m0, m1],
            # the parts of vec that will not be blockified.
            vec_leading_shape = _ops.TensorShape(vec.shape)[:-1]
            final_shape = vec_leading_shape.concatenate(self.block_shape)
        else:
            vec_leading_shape = array_ops.shape(vec)[:-1]
            final_shape = array_ops.concat(
                (vec_leading_shape, self.block_shape_tensor()), 0)
        return array_ops.reshape(vec, final_shape)
Exemplo n.º 4
0
def assert_compatible_matrix_dimensions(operator, x):
    """Assert that an argument to solve/matmul has proper domain dimension.

  If `_ops.TensorShape(operator.shape)[-2:] = [M, N]`, and `_ops.TensorShape(x.shape)[-2:] = [Q, R]`, then
  `operator.matmul(x)` is defined only if `N = Q`.  This `Op` returns an
  `Assert` that "fires" if this is not the case.  Static checks are already
  done by the base class `LinearOperator`.

  Args:
    operator:  `LinearOperator`.
    x:  `Tensor`.

  Returns:
    `Assert` `Op`.
  """
    # Static checks are done in the base class.  Only tensor asserts here.
    assert_same_dd = check_ops.assert_equal(
        array_ops.shape(x)[-2],
        operator.domain_dimension_tensor(),
        # This error message made to look similar to error raised by static check
        # in the base class.
        message=("Dimensions are not compatible.  "
                 "shape[-2] of argument to be the same as this operator"))

    return assert_same_dd
Exemplo n.º 5
0
def _unvec_by(y, num_col):
  """Unstack vector to form a matrix, with a specified amount of columns."""
  return _linalg.matrix_transpose(
      array_ops.reshape(
          y,
          array_ops.concat(
              [array_ops.shape(y)[:-1], [num_col, -1]], axis=0)))
Exemplo n.º 6
0
 def _shape_tensor(self):
     # See _ops.TensorShape(self.shape) for explanation of steps
     s_shape = array_ops.shape(self._spectrum)
     batch_shape = s_shape[:-self.block_depth]
     trailing_dims = s_shape[-self.block_depth:]
     n = math_ops.reduce_prod(trailing_dims)
     n_x_n = [n, n]
     return array_ops.concat((batch_shape, n_x_n), 0)
Exemplo n.º 7
0
 def reshape_inv(y):
     # Expand the extra dims hanging off the end, "b_extra_sh".
     # Note we use y_sh[:-1] + [b_main_sh[-1]] rather than b_main_sh, because y
     # Could have different batch dims than a and b, because of broadcasting.
     y_extra_shape = array_ops.concat(
         (array_ops.shape(y)[:-1], [b_main_sh[-1]], b_extra_sh), 0)
     y_extra_on_end = array_ops.reshape(y, y_extra_shape)
     inverse_perm = np.argsort(perm)
     return array_ops.transpose(y_extra_on_end, perm=inverse_perm)
Exemplo n.º 8
0
 def _to_dense(self):
   product = self.operators[0].to_dense()
   for operator in self.operators[1:]:
     # Product has shape [B, R1, 1, C1].
     product = product[
         ..., :, array_ops.newaxis, :, array_ops.newaxis]
     # Operator has shape [B, 1, R2, 1, C2].
     op_to_mul = operator.to_dense()[
         ..., array_ops.newaxis, :, array_ops.newaxis, :]
     # This is now [B, R1, R2, C1, C2].
     product *= op_to_mul
     # Now merge together dimensions to get [B, R1 * R2, C1 * C2].
     product = array_ops.reshape(
         product,
         shape=array_ops.concat(
             [array_ops.shape(product)[:-4],
              [array_ops.shape(product)[-4] * array_ops.shape(product)[-3],
               array_ops.shape(product)[-2] * array_ops.shape(product)[-1]]
             ], axis=0))
   product.set_shape(_ops.TensorShape(self.shape))
   return product
Exemplo n.º 9
0
 def _diag_part(self):
   diag_part = self.operators[0].diag_part()
   for operator in self.operators[1:]:
     diag_part = diag_part[..., :, array_ops.newaxis]
     op_diag_part = operator.diag_part()[..., array_ops.newaxis, :]
     diag_part *= op_diag_part
     diag_part = array_ops.reshape(
         diag_part,
         shape=array_ops.concat(
             [array_ops.shape(diag_part)[:-2], [-1]], axis=0))
   if self.range_dimension > self.domain_dimension:
     diag_dimension = self.domain_dimension
   else:
     diag_dimension = self.range_dimension
   diag_part.set_shape(
       self.batch_shape.concatenate(diag_dimension))
   return diag_part
Exemplo n.º 10
0
    def _broadcast_batch_dims(self, x, spectrum):
        """Broadcast batch dims of batch matrix `x` and spectrum."""
        # _ops.TensorShape(spectrum.shape) = batch_shape + block_shape
        # First make spectrum a batch matrix with
        #   _ops.TensorShape(spectrum.shape) = batch_shape + [prod(block_shape), 1]
        spec_mat = array_ops.reshape(
            spectrum,
            array_ops.concat((self.batch_shape_tensor(), [-1, 1]), axis=0))
        # Second, broadcast, possibly requiring an addition of array of zeros.
        x, spec_mat = linear_operator_util.broadcast_matrix_batch_dims(
            (x, spec_mat))
        # Third, put the block shape back into spectrum.
        batch_shape = array_ops.shape(x)[:-2]
        spectrum = array_ops.reshape(
            spec_mat,
            array_ops.concat((batch_shape, self.block_shape_tensor()), axis=0))

        return x, spectrum
 def _set_diag_operators(self, diag_update, is_diag_update_positive):
     """Set attributes self._diag_update and self._diag_operator."""
     if diag_update is not None:
         self._diag_operator = linear_operator_diag.LinearOperatorDiag(
             self._diag_update,
             is_positive_definite=is_diag_update_positive)
         self._diag_inv_operator = linear_operator_diag.LinearOperatorDiag(
             1. / self._diag_update,
             is_positive_definite=is_diag_update_positive)
     else:
         if tensor_shape.dimension_value(
                 _ops.TensorShape(self.u.shape)[-1]) is not None:
             r = tensor_shape.dimension_value(
                 _ops.TensorShape(self.u.shape)[-1])
         else:
             r = array_ops.shape(self.u)[-1]
         self._diag_operator = linear_operator_identity.LinearOperatorIdentity(
             num_rows=r, dtype=self.dtype)
         self._diag_inv_operator = self._diag_operator
Exemplo n.º 12
0
    def _shape_tensor(self):
        # Avoid messy broadcasting if possible.
        if _ops.TensorShape(self.shape).is_fully_defined():
            return ops.convert_to_tensor(_ops.TensorShape(
                self.shape).as_list(),
                                         dtype=dtypes.int32,
                                         name="shape")

        # Don't check the matrix dimensions.  That would add unnecessary Asserts to
        # the graph.  Things will fail at runtime naturally if shapes are
        # incompatible.
        matrix_shape = array_ops.stack([
            self.operators[0].range_dimension_tensor(),
            self.operators[-1].domain_dimension_tensor()
        ])

        # Dummy Tensor of zeros.  Will never be materialized.
        zeros = array_ops.zeros(shape=self.operators[0].batch_shape_tensor())
        for operator in self.operators[1:]:
            zeros += array_ops.zeros(shape=operator.batch_shape_tensor())
        batch_shape = array_ops.shape(zeros)

        return array_ops.concat((batch_shape, matrix_shape), 0)
Exemplo n.º 13
0
    def _shape_tensor(self):
        # Avoid messy broadcasting if possible.
        if _ops.TensorShape(self.shape).is_fully_defined():
            return ops.convert_to_tensor(_ops.TensorShape(
                self.shape).as_list(),
                                         dtype=dtypes.int32,
                                         name="shape")

        domain_dimension = self.operators[0].domain_dimension_tensor()
        range_dimension = self.operators[0].range_dimension_tensor()
        for operator in self.operators[1:]:
            domain_dimension += operator.domain_dimension_tensor()
            range_dimension += operator.range_dimension_tensor()

        matrix_shape = array_ops.stack([domain_dimension, range_dimension])

        # Dummy Tensor of zeros.  Will never be materialized.
        zeros = array_ops.zeros(shape=self.operators[0].batch_shape_tensor())
        for operator in self.operators[1:]:
            zeros += array_ops.zeros(shape=operator.batch_shape_tensor())
        batch_shape = array_ops.shape(zeros)

        return array_ops.concat((batch_shape, matrix_shape), 0)
Exemplo n.º 14
0
    def _unblockify_then_matricize(self, vec):
        """Flatten the block dimensions then reshape to a batch matrix."""
        # Suppose
        #   _ops.TensorShape(vec.shape) = [v0, v1, v2, v3],
        #   self.block_depth = 2.
        # Then
        #   leading shape = [v0, v1]
        #   block shape = [v2, v3].
        # We will reshape vec to
        #   [v1, v2*v3, v0].

        # Un-blockify: Flatten block dimensions.  Reshape
        #   [v0, v1, v2, v3] --> [v0, v1, v2*v3].
        if _ops.TensorShape(vec.shape).is_fully_defined():
            # vec_shape = [v0, v1, v2, v3]
            vec_shape = _ops.TensorShape(vec.shape).as_list()
            # vec_leading_shape = [v0, v1]
            vec_leading_shape = vec_shape[:-self.block_depth]
            # vec_block_shape = [v2, v3]
            vec_block_shape = vec_shape[-self.block_depth:]
            # flat_shape = [v0, v1, v2*v3]
            flat_shape = vec_leading_shape + [np.prod(vec_block_shape)]
        else:
            vec_shape = array_ops.shape(vec)
            vec_leading_shape = vec_shape[:-self.block_depth]
            vec_block_shape = vec_shape[-self.block_depth:]
            flat_shape = array_ops.concat(
                (vec_leading_shape, [math_ops.reduce_prod(vec_block_shape)]),
                0)
        vec_flat = array_ops.reshape(vec, flat_shape)

        # Matricize:  Reshape to batch matrix.
        #   [v0, v1, v2*v3] --> [v1, v2*v3, v0],
        # representing a shape [v1] batch of [v2*v3, v0] matrices.
        matrix = distribution_util.rotate_transpose(vec_flat, shift=-1)
        return matrix
 def _shape_tensor(self):
     d_shape = array_ops.shape(self._diag)
     k = d_shape[-1]
     return array_ops.concat((d_shape, [k]), 0)
 def _shape_tensor(self):
   v_shape = array_ops.broadcast_dynamic_shape(
       array_ops.shape(self.row),
       array_ops.shape(self.col))
   k = v_shape[-1]
   return array_ops.concat((v_shape, [k]), 0)
Exemplo n.º 17
0
    def __init__(self,
                 spectrum,
                 block_depth,
                 input_output_dtype=dtypes.complex64,
                 is_non_singular=None,
                 is_self_adjoint=None,
                 is_positive_definite=None,
                 is_square=True,
                 name="LinearOperatorCirculant"):
        r"""Initialize an `_BaseLinearOperatorCirculant`.

    Args:
      spectrum:  Shape `[B1,...,Bb, N]` `Tensor`.  Allowed dtypes: `float16`,
        `float32`, `float64`, `complex64`, `complex128`.  Type can be different
        than `input_output_dtype`
      block_depth:  Python integer, either 1, 2, or 3.  Will be 1 for circulant,
        2 for block circulant, and 3 for nested block circulant.
      input_output_dtype: `dtype` for input/output.
      is_non_singular:  Expect that this operator is non-singular.
      is_self_adjoint:  Expect that this operator is equal to its hermitian
        transpose.  If `spectrum` is real, this will always be true.
      is_positive_definite:  Expect that this operator is positive definite,
        meaning the quadratic form `x^H A x` has positive real part for all
        nonzero `x`.  Note that we do not require the operator to be
        self-adjoint to be positive-definite.  See:
        https://en.wikipedia.org/wiki/Positive-definite_matrix\
            #Extension_for_non_symmetric_matrices
      is_square:  Expect that this operator acts like square [batch] matrices.
      name:  A name to prepend to all ops created by this class.

    Raises:
      ValueError:  If `block_depth` is not an allowed value.
      TypeError:  If `spectrum` is not an allowed type.
    """

        allowed_block_depths = [1, 2, 3]

        self._name = name

        if block_depth not in allowed_block_depths:
            raise ValueError("Expected block_depth to be in %s.  Found: %s." %
                             (allowed_block_depths, block_depth))
        self._block_depth = block_depth

        with ops.name_scope(name, values=[spectrum]):
            self._spectrum = self._check_spectrum_and_return_tensor(spectrum)

            # Check and auto-set hints.
            if not np.issubdtype(self.spectrum.dtype, np.complexfloating):
                if is_self_adjoint is False:
                    raise ValueError(
                        "A real spectrum always corresponds to a self-adjoint operator."
                    )
                is_self_adjoint = True

            if is_square is False:
                raise ValueError(
                    "A [[nested] block] circulant operator is always square.")
            is_square = True

            # If _ops.TensorShape(spectrum.shape) = [s0, s1, s2], and block_depth = 2,
            # block_shape = [s1, s2]
            s_shape = array_ops.shape(self.spectrum)
            self._block_shape_tensor = s_shape[-self.block_depth:]

            # Add common variants of spectrum to the graph.
            self._spectrum_complex = _to_complex(self.spectrum)
            self._abs_spectrum = math_ops.abs(self.spectrum)
            self._conj_spectrum = math_ops.conj(self._spectrum_complex)

            super(_BaseLinearOperatorCirculant,
                  self).__init__(dtype=dtypes.as_dtype(input_output_dtype),
                                 graph_parents=[self.spectrum],
                                 is_non_singular=is_non_singular,
                                 is_self_adjoint=is_self_adjoint,
                                 is_positive_definite=is_positive_definite,
                                 is_square=is_square,
                                 name=name)
Exemplo n.º 18
0
def _vec(x):
  """Stacks column of matrix to form a single column."""
  return array_ops.reshape(
      _linalg.matrix_transpose(x),
      array_ops.concat(
          [array_ops.shape(x)[:-2], [-1]], axis=0))
Exemplo n.º 19
0
def broadcast_matrix_batch_dims(batch_matrices, name=None):
    """Broadcast leading dimensions of zero or more [batch] matrices.

  Example broadcasting one batch dim of two simple matrices.

  ```python
  x = [[1, 2],
       [3, 4]]  # Shape [2, 2], no batch dims

  y = [[[1]]]   # Shape [1, 1, 1], 1 batch dim of shape [1]

  x_bc, y_bc = broadcast_matrix_batch_dims([x, y])

  x_bc
  ==> [[[1, 2],
        [3, 4]]]  # Shape [1, 2, 2], 1 batch dim of shape [1].

  y_bc
  ==> same as y
  ```

  Example broadcasting many batch dims

  ```python
  x = tf.random.normal(shape=(2, 3, 1, 4, 4))
  y = tf.random.normal(shape=(1, 3, 2, 5, 5))
  x_bc, y_bc = broadcast_matrix_batch_dims([x, y])

  _ops.TensorShape(x_bc.shape)
  ==> (2, 3, 2, 4, 4)

  _ops.TensorShape(y_bc.shape)
  ==> (2, 3, 2, 5, 5)
  ```

  Args:
    batch_matrices:  Iterable of `Tensor`s, each having two or more dimensions.
    name:  A string name to prepend to created ops.

  Returns:
    bcast_matrices: List of `Tensor`s, with `bcast_matricies[i]` containing
      the values from `batch_matrices[i]`, with possibly broadcast batch dims.

  Raises:
    ValueError:  If any input `Tensor` is statically determined to have less
      than two dimensions.
  """
    with ops.name_scope(name or "broadcast_matrix_batch_dims",
                        values=batch_matrices):
        check_ops.assert_proper_iterable(batch_matrices)
        batch_matrices = list(batch_matrices)

        for i, mat in enumerate(batch_matrices):
            batch_matrices[i] = ops.convert_to_tensor(mat)
            assert_is_batch_matrix(batch_matrices[i])

        if len(batch_matrices) < 2:
            return batch_matrices

        # Try static broadcasting.
        # bcast_batch_shape is the broadcast batch shape of ALL matrices.
        # E.g. if batch_matrices = [x, y], with
        # _ops.TensorShape(x.shape) =    [2, j, k]  (batch shape =    [2])
        # _ops.TensorShape(y.shape) = [3, 1, l, m]  (batch shape = [3, 1])
        # ==> bcast_batch_shape = [3, 2]
        bcast_batch_shape = _ops.TensorShape(batch_matrices[0].shape)[:-2]
        for mat in batch_matrices[1:]:
            bcast_batch_shape = _ops.broadcast_static_shape_as_tensorshape(
                bcast_batch_shape,
                _ops.TensorShape(mat.shape)[:-2])
        if bcast_batch_shape.is_fully_defined():
            for i, mat in enumerate(batch_matrices):
                if _ops.TensorShape(mat.shape)[:-2] != bcast_batch_shape:
                    bcast_shape = array_ops.concat([
                        bcast_batch_shape.as_list(),
                        array_ops.shape(mat)[-2:]
                    ],
                                                   axis=0)
                    batch_matrices[i] = _ops.broadcast_to(mat, bcast_shape)
            return batch_matrices

        # Since static didn't work, do dynamic, which always copies data.
        bcast_batch_shape = array_ops.shape(batch_matrices[0])[:-2]
        for mat in batch_matrices[1:]:
            bcast_batch_shape = array_ops.broadcast_dynamic_shape(
                bcast_batch_shape,
                array_ops.shape(mat)[:-2])
        for i, mat in enumerate(batch_matrices):
            batch_matrices[i] = _ops.broadcast_to(
                mat,
                array_ops.concat(
                    [bcast_batch_shape,
                     array_ops.shape(mat)[-2:]], axis=0))

        return batch_matrices
Exemplo n.º 20
0
def _reshape_for_efficiency(a,
                            b,
                            transpose_a=False,
                            transpose_b=False,
                            adjoint_a=False,
                            adjoint_b=False):
    """Maybe reshape a, b, and return an inverse map.  For matmul/solve."""
    def identity(x):
        return x

    # At this point, we have not taken transpose/adjoint of a/b.
    still_need_to_transpose = True

    if _ops.TensorShape(a.shape).ndims is None or _ops.TensorShape(
            b.shape).ndims is None:
        return a, b, identity, still_need_to_transpose

    # This could be handled in the future, but seems less common.
    if _ops.TensorShape(a.shape).ndims >= _ops.TensorShape(b.shape).ndims:
        return a, b, identity, still_need_to_transpose

    # From now on, we might modify b, but will not modify a.

    # Suppose:
    #   _ops.TensorShape(a.shape) =     C + [m, n], _ops.TensorShape(b.shape) =
    #   _ops.TensorShape(b.shape) = S + C + [n, r]
    b_extra_ndims = _ops.TensorShape(b.shape).ndims - _ops.TensorShape(
        a.shape).ndims

    # b_extra_sh = S, b_main_sh = C + [n, r]
    b_extra_sh = array_ops.shape(b)[:b_extra_ndims]
    b_main_sh = array_ops.shape(b)[b_extra_ndims:]

    # No reason to flip unless the extra dims of b are big enough.  Why?
    # Assume adjoint/transpose = False.  Then...
    # By not flipping, we have to replicate a to shape
    #   b_extra_sh + _ops.TensorShape(a.shape),
    # which could use extra memory.  But in all cases, the final output has shape
    #   b_extra_sh + _ops.TensorShape(a.shape)[:-1] + _ops.TensorShape([b.shape)[-1]]
    # So we only end up creating a larger object if the end dim of b is smaller
    # than the end dim of a.  This often happens, e.g. if b was a vector that was
    # expanded to a matrix (by appending a singleton).

    # Since adjoint/transpose may not be False, we must make adjustments here.
    # The dim of b that holds the multiple equations.
    a_domain_sz_ = _ops.TensorShape(
        a.shape)[-2 if adjoint_a or transpose_a else -1]
    b_eq_sz_ = _ops.TensorShape(
        b.shape)[-2 if adjoint_b or transpose_b else -1]
    b_extra_sz_ = (
        np.prod(_ops.TensorShape(b.shape)[:b_extra_ndims].as_list()) if
        _ops.TensorShape(b.shape)[:b_extra_ndims].is_fully_defined() else None)
    if (a_domain_sz_ is not None and b_eq_sz_ is not None
            and b_extra_sz_ is not None):
        if b_extra_sz_ < 2 or a_domain_sz_ <= b_eq_sz_:
            return a, b, identity, still_need_to_transpose

    # At this point, we're flipping for sure!
    # Any transposes/adjoints will happen here explicitly, rather than in calling
    # code.  Why?  To avoid having to write separate complex code for each case.
    if adjoint_a:
        a = linalg.adjoint(a)
    elif transpose_a:
        a = linalg.transpose(a)
    if adjoint_b:
        b = linalg.adjoint(b)
    elif transpose_b:
        b = linalg.transpose(b)
    still_need_to_transpose = False

    # Recompute shapes, since the transpose/adjoint may have changed them.
    b_extra_sh = array_ops.shape(b)[:b_extra_ndims]
    b_main_sh = array_ops.shape(b)[b_extra_ndims:]

    # Permutation to put the extra dims at the end.
    perm = (np.concatenate(
        (np.arange(b_extra_ndims,
                   _ops.TensorShape(b.shape).ndims), np.arange(
                       0, b_extra_ndims)), 0))
    b_extra_on_end = array_ops.transpose(b, perm=perm)

    # Now squash this end into one long dim.
    b_squashed_end = array_ops.reshape(
        b_extra_on_end, array_ops.concat((b_main_sh[:-1], [-1]), 0))

    def reshape_inv(y):
        # Expand the extra dims hanging off the end, "b_extra_sh".
        # Note we use y_sh[:-1] + [b_main_sh[-1]] rather than b_main_sh, because y
        # Could have different batch dims than a and b, because of broadcasting.
        y_extra_shape = array_ops.concat(
            (array_ops.shape(y)[:-1], [b_main_sh[-1]], b_extra_sh), 0)
        y_extra_on_end = array_ops.reshape(y, y_extra_shape)
        inverse_perm = np.argsort(perm)
        return array_ops.transpose(y_extra_on_end, perm=inverse_perm)

    return a, b_squashed_end, reshape_inv, still_need_to_transpose
 def _shape_tensor(self):
     batch_shape = array_ops.broadcast_dynamic_shape(
         self.base_operator.batch_shape_tensor(),
         array_ops.shape(self.u)[:-2])
     return array_ops.concat(
         [batch_shape, self.base_operator.shape_tensor()[-2:]], axis=0)
Exemplo n.º 22
0
 def _shape_tensor(self):
     d_shape = array_ops.shape(self._reflection_axis)
     k = d_shape[-1]
     return array_ops.concat((d_shape, [k]), 0)
 def _shape_tensor(self):
     return array_ops.shape(self._matrix)
    def _shape_tensor(self):
        matrix_shape = array_ops.stack((self._num_rows, self._num_rows),
                                       axis=0)

        batch_shape = array_ops.shape(self.multiplier)
        return array_ops.concat((batch_shape, matrix_shape), 0)