Exemplo n.º 1
0
    def test_matches_locallineartrend(self):
        """SemiLocalLinearTrend with trivial AR process is a LocalLinearTrend."""

        level_scale = self._build_placeholder(0.5)
        slope_scale = self._build_placeholder(0.5)
        initial_level = self._build_placeholder(3.)
        initial_slope = self._build_placeholder(-2.)
        num_timesteps = 5
        y = self._build_placeholder([1.0, 2.5, 4.3, 6.1, 7.8])

        semilocal_ssm = SemiLocalLinearTrendStateSpaceModel(
            num_timesteps=num_timesteps,
            level_scale=level_scale,
            slope_scale=slope_scale,
            slope_mean=self._build_placeholder(0.),
            autoregressive_coef=self._build_placeholder(1.),
            initial_state_prior=tfd.MultivariateNormalDiag(
                loc=[initial_level, initial_slope],
                scale_diag=self._build_placeholder([1., 1.])))

        local_ssm = LocalLinearTrendStateSpaceModel(
            num_timesteps=num_timesteps,
            level_scale=level_scale,
            slope_scale=slope_scale,
            initial_state_prior=tfd.MultivariateNormalDiag(
                loc=[initial_level, initial_slope],
                scale_diag=self._build_placeholder([1., 1.])))

        semilocal_lp = semilocal_ssm.log_prob(y[:, tf.newaxis])
        local_lp = local_ssm.log_prob(y[:, tf.newaxis])
        self.assertAllClose(self.evaluate(semilocal_lp),
                            self.evaluate(local_lp))

        semilocal_mean = semilocal_ssm.mean()
        local_mean = local_ssm.mean()
        self.assertAllClose(self.evaluate(semilocal_mean),
                            self.evaluate(local_mean))

        semilocal_variance = semilocal_ssm.variance()
        local_variance = local_ssm.variance()
        self.assertAllClose(self.evaluate(semilocal_variance),
                            self.evaluate(local_variance))
Exemplo n.º 2
0
  def test_stats(self):

    # Build a model with expected initial loc 0 and slope 1.
    level_scale = self._build_placeholder(1.0)
    slope_scale = self._build_placeholder(1.0)
    initial_state_prior = tfd.MultivariateNormalDiag(
        loc=self._build_placeholder([0, 1.]),
        scale_diag=self._build_placeholder([1., 1.]))

    ssm = LocalLinearTrendStateSpaceModel(
        num_timesteps=10,
        level_scale=level_scale,
        slope_scale=slope_scale,
        initial_state_prior=initial_state_prior)

    # In expectation, the process grows linearly.
    mean = self.evaluate(ssm.mean())
    self.assertAllClose(mean, np.arange(0, 10)[:, np.newaxis])

    # slope variance at time T is linear: T * slope_scale
    expected_variance = [1, 3, 8, 18, 35, 61, 98, 148, 213, 295]
    variance = self.evaluate(ssm.variance())
    self.assertAllClose(variance, np.array(expected_variance)[:, np.newaxis])
Exemplo n.º 3
0
    def test_sum_of_local_linear_trends(self):

        # We know analytically that the sum of two local linear trends is
        # another local linear trend, with means and variances scaled
        # accordingly, so the additive model should match this behavior.

        level_scale = 0.5
        slope_scale = 1.1
        initial_level = 3.
        initial_slope = -2.
        observation_noise_scale = 0.
        num_timesteps = 5
        y = self._build_placeholder([1.0, 2.5, 4.3, 6.1, 7.8])

        # Combine two local linear trend models, one a full model, the other
        # with just a moving mean (zero slope).
        local_ssm = LocalLinearTrendStateSpaceModel(
            num_timesteps=num_timesteps,
            level_scale=level_scale,
            slope_scale=slope_scale,
            initial_state_prior=tfd.MultivariateNormalDiag(
                loc=self._build_placeholder([initial_level, initial_slope]),
                scale_diag=self._build_placeholder([1., 1.])))

        second_level_scale = 0.3
        second_initial_level = 1.1
        moving_level_ssm = LocalLinearTrendStateSpaceModel(
            num_timesteps=num_timesteps,
            level_scale=second_level_scale,
            slope_scale=0.,
            initial_state_prior=tfd.MultivariateNormalDiag(
                loc=self._build_placeholder([second_initial_level, 0.]),
                scale_diag=self._build_placeholder([1., 0.])))

        additive_ssm = AdditiveStateSpaceModel(
            [local_ssm, moving_level_ssm],
            observation_noise_scale=observation_noise_scale)

        # Build the analytical sum of the two processes.
        target_ssm = LocalLinearTrendStateSpaceModel(
            num_timesteps=num_timesteps,
            level_scale=np.float32(
                np.sqrt(level_scale**2 + second_level_scale**2)),
            slope_scale=np.float32(slope_scale),
            observation_noise_scale=observation_noise_scale,
            initial_state_prior=tfd.MultivariateNormalDiag(
                loc=self._build_placeholder(
                    [initial_level + second_initial_level,
                     initial_slope + 0.]),
                scale_diag=self._build_placeholder(np.sqrt([2., 1.]))))

        # Test that both models behave equivalently.
        additive_mean = additive_ssm.mean()
        target_mean = target_ssm.mean()
        self.assertAllClose(self.evaluate(additive_mean),
                            self.evaluate(target_mean))

        additive_variance = additive_ssm.variance()
        target_variance = target_ssm.variance()
        self.assertAllClose(self.evaluate(additive_variance),
                            self.evaluate(target_variance))

        additive_lp = additive_ssm.log_prob(y[:, np.newaxis])
        target_lp = target_ssm.log_prob(y[:, np.newaxis])
        self.assertAllClose(self.evaluate(additive_lp),
                            self.evaluate(target_lp))