Exemplo n.º 1
0
    def test_approx_ndcg_loss(self):
        scores = [[1.4, -2.8, -0.4], [0., 1.8, 10.2], [1., 1.2, -3.2]]
        # ranks= [[1,    3,    2],   [3,  2,   1],    [2,  1,    3]]
        labels = [[0., 2., 1.], [1., 0., 3.], [0., 0., 0.]]
        weights = [[2.], [1.], [1.]]
        example_weights = [[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]
        norm_weights = [
            normalize_weights(w, l) for w, l in zip(example_weights, labels)
        ]

        loss = losses.ApproxNDCGLoss()
        self.assertAlmostEqual(
            loss(labels, scores).numpy(),
            -((1 / (3 / ln(2) + 1 / ln(3))) * (3 / ln(4) + 1 / ln(3)) +
              (1 / (7 / ln(2) + 1 / ln(3))) * (7 / ln(2) + 1 / ln(4))) / 3.,
            places=5)
        self.assertAlmostEqual(
            loss(labels, scores, weights).numpy(),
            -(2 * (1 / (3 / ln(2) + 1 / ln(3))) * (3 / ln(4) + 1 / ln(3)) + 1 *
              (1 / (7 / ln(2) + 1 / ln(3))) * (7 / ln(2) + 1 / ln(4))) / 3.,
            places=5)
        self.assertAlmostEqual(
            loss(labels, scores, example_weights).numpy(),
            -(norm_weights[0] * (1 / (3 / ln(2) + 1 / ln(3))) *
              (3 / ln(4) + 1 / ln(3)) + norm_weights[1] *
              (1 / (7 / ln(2) + 1 / ln(3))) * (7 / ln(2) + 1 / ln(4))) / 3.,
            places=5)
Exemplo n.º 2
0
 def test_listwise_losses_are_serializable(self):
     self.assertIsLossSerializable(
         losses.SoftmaxLoss(lambda_weight=self._lambda_weight))
     self.assertIsLossSerializable(
         losses.ListMLELoss(lambda_weight=self._lambda_weight))
     self.assertIsLossSerializable(
         losses.ApproxMRRLoss(lambda_weight=self._lambda_weight))
     self.assertIsLossSerializable(
         losses.ApproxNDCGLoss(lambda_weight=self._lambda_weight))
     # TODO: Debug assertIsLossSerializable for Gumbel loss. Right now,
     # the loss values got from obj and the deserialized don't match exactly.
     self.assertIsSerializable(losses.GumbelApproxNDCGLoss(seed=1))
Exemplo n.º 3
0
  def test_approx_ndcg_loss_sum_batch(self):
    scores = [[1.4, -2.8, -0.4], [0., 1.8, 10.2], [1., 1.2, -3.2]]
    # ranks= [[1,    3,    2],   [3,  2,   1],    [2,  1,    3]]
    labels = [[0., 2., 1.], [1., 0., 3.], [0., 0., 0.]]
    example_weights = [[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]
    norm_wts = [
        normalize_weights(wts, lbls)
        for wts, lbls in zip(example_weights, labels)
    ]

    loss = losses.ApproxNDCGLoss(
        reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE)
    self.assertAlmostEqual(
        loss(labels, scores).numpy(),
        -((1 / (3 / ln(2) + 1 / ln(3))) * (3 / ln(4) + 1 / ln(3)) +
          (1 / (7 / ln(2) + 1 / ln(3))) * (7 / ln(2) + 1 / ln(4))) / 3.,
        places=5)
    self.assertAlmostEqual(
        loss(labels, scores, example_weights).numpy(),
        -(norm_wts[0] * (1 / (3 / ln(2) + 1 / ln(3))) *
          (3 / ln(4) + 1 / ln(3)) + norm_wts[1] *
          (1 / (7 / ln(2) + 1 / ln(3))) * (7 / ln(2) + 1 / ln(4))) / 3.,
        places=5)