def forward(self,examples,labels): """建立前向传播图""" opts = self._options # 声明所有需要的变量 # embeddings :[vocab-size,emb_size] init_width = 0.5 / opts.emb_dim emb = tf.Variable( tf.random_uniform([opts.vocab_size,opts.emb_dim], -init_width,init_width),name = "emb") self._emb = emb # softmax_weights:[vocab_size,emb_dim] sm_w_t = tf.Variable( tf.zeros([opts.vocab_size,opts.emb_dim]),name="sm_w_t") # softmax bias:[emd_dim] sm_b = tf.Variable( tf.zeros([opts.vocab_size]),name="sm_b") # global step:scalar self.global_step = tf.Variable(0,name="global_step") # 候选采样计算nce loss的节点 labels_matrix = tf.reshape( tf.cast(labels,dtype=tf.int64),[opts.batch_size,1]) # 负采样 sampled_ids, _,_ = (tf.nn.fixed_unigram_candidate_sampler( true_classes=labels_matrix, num_true=1, num_sampled=opts.num_samples, unique=True, range_max=opts.vocab_size, distortion=0.75, unigrams=opts.vocab_counts.tolist())) # 样本的嵌入:[batch_size,emb_dim] example_emb = tf.nn.embedding_lookup(emb,examples) # 标签的权重w:[batch_size,emb_dim] true_w = tf.nn.embedding_lookup(sm_w_t,labels) # 标签的偏差b :[batch_size,1] true_b = tf.nn.embedding_lookup(sm_b,labels) # 采样样本的ids的权重(Weights for sampled ids):[num_sampled,emb_dim] sampled_w = tf.nn.embedding_lookup(sm_w_t, sampled_ids) # 采样样本的 bias :[num_sampled,1] sampled_b = tf.nn.embedding_lookup(sm_b,sampled_ids) # True logits:[batch_size,1] true_logits = tf.reduce_sum(tf.multiply(example_emb,true_w),1) + true_b # 采样样本预测值 sampled logits:[batch_size,num_sampled] sampled_b_vec = tf.reshape(sampled_b,[opts.num_samples]) sampled_logits = tf.matmul(example_emb, sampled_w, transpose_b=True) + sampled_b_vec return true_logits,sampled_logits
def __init__(self, is_training, config): self.batch_size = batch_size = config.batch_size # batch_size self.num_steps = num_steps = config.num_steps # size = config.hidden_size # 隐藏层 vocab_size = config.vocab_size # 词表size # 输入占位符 self._input_data = tf.placeholder(tf.int32, [batch_size, num_steps]) self._targets = tf.placeholder(tf.int32, [batch_size, num_steps]) lstm_cell = rnn_cell.BasicLSTMCell(size, forget_bias=0.0) if is_training and config.keep_prob < 1: lstm_cell = rnn_cell.DropoutWrapper( lstm_cell, output_keep_prob=config.keep_prob) cell = rnn_cell.MultiRNNCell([lstm_cell] * config.num_layers) self._initial_state = cell.zero_state(batch_size, tf.float32) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [vocab_size, size]) inputs = tf.nn.embedding_lookup(embedding, self._input_data) if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) outputs = [] states = [] state = self._initial_state with tf.variable_scope("RNN"): for time_step in range(num_steps): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(inputs[:, time_step, :], state) outputs.append(cell_output) states.append(state) output = tf.reshape(tf.concat(outputs, 1), [-1, size]) softmax_w = tf.get_variable("softmax_w", [size, vocab_size]) softmax_b = tf.get_variable("softmax_b", [vocab_size]) logits = tf.matmul(output, softmax_w) + softmax_b loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [logits], [tf.reshape(self._targets, [-1])], [tf.ones([batch_size * num_steps])], vocab_size) self._cost = cost = tf.reduce_sum(loss) / batch_size self._final_state = states[-1] if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self.lr) self._train_op = optimizer.apply_gradients(zip(grads, tvars))
def loss(logits, labels): # 对所有的可训练参数增加 l2 loss sparse_labels = tf.reshape(labels, [FLAGS.batch_size, 1]) indices = tf.reshape(tf.range(FLAGS.batch_size), [FLAGS.batch_size, 1]) concated = tf.concat([indices, sparse_labels], 1) dense_labels = tf.sparse_to_dense(concated, [FLAGS.batch_size, NUM_CLASSES], 1.0, 0.0) # 计算均方误差 cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2( logits, dense_labels, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) return tf.add_n(tf.get_collection('losses'), name='total_loss')
def read_cifar10(filename_queue): class CIFAR10Record(object): pass result = CIFAR10Record() # 输入标准化 label_bytes = 1 result.height = 32 result.width = 32 result.depth = 3 image_bytes = result.height * result.width * result.depth record_bytes = label_bytes + image_bytes reader = tf.FixedLengthRecordReader(record_bytes=record_bytes) result.key, value = reader.read(filename_queue) # record_bytes = tf.decode_raw(value, tf.uint8) # 把标签从int8转到int32 result.label = tf.cast(tf.slice(record_bytes, [0], [label_bytes]), tf.int32) # reshape图片为长宽高的形式[depth,height,width] depth_major = tf.reshape( tf.slice(record_bytes, [label_bytes], [image_bytes]), [result.depth, result.height, result.width]) # 转化为[height,width,depth] result.uint8image = tf.transpose(depth_major, [1, 2, 0]) return result
def conv_network(x, weights, biases, dropout): # mnist是1-D的784维的向量,reshape维度为[Height*Width*depth] # Tensor变成4-D的向量,即[batch_size,height,width,depth] x = tf.reshape(x, shape=[-1, 28, 28, 1]) # j卷积层 conv1 = conv2d(x, weights['wc1'], biases['bc1']) # max pooling conv1 = maxpool2d(conv1, k=2) # 卷积层 conv2 = conv2d(conv1, weights['wc2'], biases['bc2']) conv2 = maxpool2d(conv2, k=2) # 全连接层 # 把conv2的维度reshape成全连接层的输入,拉平 fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]]) fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1']) fc1 = tf.nn.relu(fc1) # Dropout fc1 = tf.nn.dropout(fc1, dropout) out = tf.add(tf.matmul(fc1, weights['out']), biases['out']) return out
def _generate_image_and_label_batch(image, label, min_queue_examples, batch_size): """ :param image: 3D Tensor :param label: 1D Tensor int32 :param min_queue_examples: :param batch_size: :return: """ num_preprocess_threads = 16 image, label_batch = tf.train.shuffle_batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size, min_after_dequeue=min_queue_examples) # 可视化训练数据 tf.summary.image('images', image) return image, tf.reshape(label_batch, [batch_size])
def conv_network(x_dict, n_classes, dropout, reuse, is_training): with tf.variable_scope('ConvNetwork', reuse=reuse): x = x_dict['images'] x = tf.reshape(x, shape=[-1, 28, 28, 1]) conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) conv1 = tf.layers.max_pooling2d(conv1, 2, 2, padding='SAME') conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu) conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # 全连接层,需要把上一个输入拉平 fc1 = tf.contrib.layers.flatten(conv2) fc1 = tf.layers.dense(fc1, 1024) fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) out = tf.layers.dense(fc1, n_classes) return out
def conv_net(x, n_classes, dropout, reuse, is_training): with tf.variable_scope('ConvNet', reuse=reuse): x = tf.reshape(x, shape=[-1, 28, 28, 1]) x = tf.layers.conv2d(x, 64, 5, activation=tf.nn.relu) x = tf.layers.max_pooling2d(x, 2, 2) x = tf.layers.conv2d(x, 256, 3, activation=tf.nn.relu) x = tf.layers.conv2d(x, 512, 3, activation=tf.nn.relu) x = tf.layers.max_pooling2d(x, 2, 2) x = tf.contrib.layers.flatten(x) # 全连接层 x = tf.layers.dense(x, 2048) x = tf.layers.dropout(x, rate=dropout, training=is_training) x = tf.layers.dense(x, 1024) x = tf.layers.dropout(x, rate=dropout, training=is_training) out = tf.layers.dense(x, n_classes) out = tf.nn.softmax(out) if not is_training else out return out
def dynamicRNN(x, seqlen, weights, biases): x = tf.unstack(x, seq_max_len, 1) # 定义lstm cell lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden) outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32, sequence_length=seqlen) # 执行动态计算的时候,必须检索最后一个动态计算的输出,如果序列长度为10 ,需要检索第10个输出。 # 所以自定义一个OP,针对每个样本的batchsize,获取其长度并且获得相应的输出。 # outputs 是每个timesteps的输出列表,打包成[batch_size,n_step,n_inputs] outputs = tf.stack(outputs) outputs = tf.transpose(outputs, [1, 0, 2]) batch_size = tf.shape(outputs)[0] # 每个样本的起始索引 index = tf.range(0, batch_size) * seq_max_len + (seqlen - 1) outputs = tf.gather(tf.reshape(outputs, [-1, n_hidden]), index) return tf.matmul(outputs, weights['out']) + biases['out']
def inference(images): # 构造模型 # 卷积层1 with tf.variable_scope('conv1') as scope: kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64], stddev=1e-4, wd=0.0) conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) bias = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(bias, name=scope.name) _activation_summary(conv1) # 池化层1 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name="pool1") # 正则化 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # 卷积层2 with tf.variable_scope('conv2') as scope: kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=1e-4, wd=0.0) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) bias = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(bias, name=scope.name) _activation_summary(conv2) # 正则化2 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # 池化层2 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # 线性修正的全连接层,拉平全连接层 with tf.variable_scope('local3') as scope: dim = 1 # 把 上一层输出的形状拉平 for d in pool2.get_shape()[1:].as_list(): dim *= d reshape = tf.reshape(pool2, [FLAGS.batch_size, dim]) weights = _variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) _activation_summary(local3) # 线性修正的全连接层。 with tf.variable_scope('local4') as scope: weights = _variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name) _activation_summary(local4) # softmax层 with tf.variable_scope('softmax_linear') as scope: weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES], stddev=1 / 192.0, wd=0.0) biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0)) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name) _activation_summary(softmax_linear) return softmax_linear
# 定义最大池化函数 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') print("use cnn get feature..") # 针对mnist开始卷积(第一层) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) # 为了卷积需要,需要把x变成一个4d向量,2、3维度对应图片的宽、高。最后一个代表颜色通道数 x_image = tf.reshape(x, [-1, 28, 28, 1]) # 然后,把x_image和权重张量进行卷积,加上偏置项,使用relu作为激活函数,最后进行max_pooling h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) print("second conv..") # 第二层卷积 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 全连接层,图片尺寸减少到7*7,加入全连接层,就是一个全连接的神经网络,处理整张图片。 # 操作:这一步将池化层的tensor乘以W +b。计算relu